dwww Home | Manual pages | Find package

round(3)                   Library Functions Manual                   round(3)

NAME
       round, roundf, roundl - round to nearest integer, away from zero

LIBRARY
       Math library (libm, -lm)

SYNOPSIS
       #include <math.h>

       double round(double x);
       float roundf(float x);
       long double roundl(long double x);

   Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

       round(), roundf(), roundl():
           _ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

DESCRIPTION
       These functions round x to the nearest integer, but round halfway cases
       away  from  zero  (regardless  of  the  current rounding direction, see
       fenv(3)), instead of to the nearest even integer like rint(3).

       For example, round(0.5) is 1.0, and round(-0.5) is -1.0.

RETURN VALUE
       These functions return the rounded integer value.

       If x is integral, +0, -0, NaN, or infinite, x itself is returned.

ERRORS
       No errors occur.  POSIX.1-2001 documents a range error  for  overflows,
       but see NOTES.

ATTRIBUTES
       For  an  explanation  of  the  terms  used in this section, see attrib-
       utes(7).
       ┌───────────────────────────────────────────┬───────────────┬─────────┐
       │ Interface                                 Attribute     Value   │
       ├───────────────────────────────────────────┼───────────────┼─────────┤
       │ round(), roundf(), roundl()               │ Thread safety │ MT-Safe │
       └───────────────────────────────────────────┴───────────────┴─────────┘

STANDARDS
       C11, POSIX.1-2008.

HISTORY
       glibc 2.1.  C99, POSIX.1-2001.

NOTES
       POSIX.1-2001 contains text about overflow (which  might  set  errno  to
       ERANGE,  or  raise  an FE_OVERFLOW exception).  In practice, the result
       cannot overflow on any current machine, so this error-handling stuff is
       just nonsense.  (More precisely, overflow can happen only when the max-
       imum value of the exponent is smaller than the number of mantissa bits.
       For the IEEE-754 standard 32-bit and 64-bit floating-point numbers  the
       maximum value of the exponent is 127 (respectively, 1023), and the num-
       ber  of  mantissa  bits including the implicit bit is 24 (respectively,
       53).)

       If you want to store the rounded value in an integer type, you probably
       want to use one of the functions described in lround(3) instead.

SEE ALSO
       ceil(3), floor(3), lround(3), nearbyint(3), rint(3), trunc(3)

Linux man-pages 6.7               2023-10-31                          round(3)

Generated by dwww version 1.16 on Tue Dec 16 14:48:10 CET 2025.