dwww Home | Manual pages | Find package

PROVIDER-BASE(7SSL)                 OpenSSL                PROVIDER-BASE(7SSL)

NAME
       provider-base - The basic OpenSSL library <-> provider functions

SYNOPSIS
        #include <openssl/core_dispatch.h>

        /*
         * None of these are actual functions, but are displayed like this for
         * the function signatures for functions that are offered as function
         * pointers in OSSL_DISPATCH arrays.
         */

        /* Functions offered by libcrypto to the providers */
        const OSSL_ITEM *core_gettable_params(const OSSL_CORE_HANDLE *handle);
        int core_get_params(const OSSL_CORE_HANDLE *handle, OSSL_PARAM params[]);

        typedef void (*OSSL_thread_stop_handler_fn)(void *arg);
        int core_thread_start(const OSSL_CORE_HANDLE *handle,
                              OSSL_thread_stop_handler_fn handfn,
                              void *arg);

        OPENSSL_CORE_CTX *core_get_libctx(const OSSL_CORE_HANDLE *handle);
        void core_new_error(const OSSL_CORE_HANDLE *handle);
        void core_set_error_debug(const OSSL_CORE_HANDLE *handle,
                                  const char *file, int line, const char *func);
        void core_vset_error(const OSSL_CORE_HANDLE *handle,
                             uint32_t reason, const char *fmt, va_list args);

        int core_obj_add_sigid(const OSSL_CORE_HANDLE *prov, const char  *sign_name,
                               const char *digest_name, const char *pkey_name);
        int core_obj_create(const OSSL_CORE_HANDLE *handle, const char *oid,
                            const char *sn, const char *ln);

        /*
         * Some OpenSSL functionality is directly offered to providers via
         * dispatch
         */
        void *CRYPTO_malloc(size_t num, const char *file, int line);
        void *CRYPTO_zalloc(size_t num, const char *file, int line);
        void CRYPTO_free(void *ptr, const char *file, int line);
        void CRYPTO_clear_free(void *ptr, size_t num,
                               const char *file, int line);
        void *CRYPTO_realloc(void *addr, size_t num,
                             const char *file, int line);
        void *CRYPTO_clear_realloc(void *addr, size_t old_num, size_t num,
                                   const char *file, int line);
        void *CRYPTO_secure_malloc(size_t num, const char *file, int line);
        void *CRYPTO_secure_zalloc(size_t num, const char *file, int line);
        void CRYPTO_secure_free(void *ptr, const char *file, int line);
        void CRYPTO_secure_clear_free(void *ptr, size_t num,
                                      const char *file, int line);
        int CRYPTO_secure_allocated(const void *ptr);
        void OPENSSL_cleanse(void *ptr, size_t len);

        unsigned char *OPENSSL_hexstr2buf(const char *str, long *buflen);

        OSSL_CORE_BIO *BIO_new_file(const char *filename, const char *mode);
        OSSL_CORE_BIO *BIO_new_membuf(const void *buf, int len);
        int BIO_read_ex(OSSL_CORE_BIO *bio, void *data, size_t data_len,
                        size_t *bytes_read);
        int BIO_write_ex(OSSL_CORE_BIO *bio, const void *data, size_t data_len,
                         size_t *written);
        int BIO_up_ref(OSSL_CORE_BIO *bio);
        int BIO_free(OSSL_CORE_BIO *bio);
        int BIO_vprintf(OSSL_CORE_BIO *bio, const char *format, va_list args);
        int BIO_vsnprintf(char *buf, size_t n, const char *fmt, va_list args);

        void OSSL_SELF_TEST_set_callback(OSSL_LIB_CTX *libctx, OSSL_CALLBACK *cb,
                                         void *cbarg);

        size_t get_entropy(const OSSL_CORE_HANDLE *handle,
                           unsigned char **pout, int entropy,
                           size_t min_len, size_t max_len);
        void cleanup_entropy(const OSSL_CORE_HANDLE *handle,
                             unsigned char *buf, size_t len);
        size_t get_nonce(const OSSL_CORE_HANDLE *handle,
                         unsigned char **pout, size_t min_len, size_t max_len,
                         const void *salt, size_t salt_len);
        void cleanup_nonce(const OSSL_CORE_HANDLE *handle,
                           unsigned char *buf, size_t len);

        /* Functions for querying the providers in the application library context */
        int provider_register_child_cb(const OSSL_CORE_HANDLE *handle,
                            int (*create_cb)(const OSSL_CORE_HANDLE *provider,
                                             void *cbdata),
                            int (*remove_cb)(const OSSL_CORE_HANDLE *provider,
                                             void *cbdata),
                            int (*global_props_cb)(const char *props, void *cbdata),
                            void *cbdata);
        void provider_deregister_child_cb(const OSSL_CORE_HANDLE *handle);
        const char *provider_name(const OSSL_CORE_HANDLE *prov);
        void *provider_get0_provider_ctx(const OSSL_CORE_HANDLE *prov);
        const OSSL_DISPATCH *provider_get0_dispatch(const OSSL_CORE_HANDLE *prov);
        int provider_up_ref(const OSSL_CORE_HANDLE *prov, int activate);
        int provider_free(const OSSL_CORE_HANDLE *prov, int deactivate);

        /* Functions offered by the provider to libcrypto */
        void provider_teardown(void *provctx);
        const OSSL_ITEM *provider_gettable_params(void *provctx);
        int provider_get_params(void *provctx, OSSL_PARAM params[]);
        const OSSL_ALGORITHM *provider_query_operation(void *provctx,
                                                       int operation_id,
                                                       const int *no_store);
        void provider_unquery_operation(void *provctx, int operation_id,
                                        const OSSL_ALGORITHM *algs);
        const OSSL_ITEM *provider_get_reason_strings(void *provctx);
        int provider_get_capabilities(void *provctx, const char *capability,
                                      OSSL_CALLBACK *cb, void *arg);
        int provider_self_test(void *provctx);

DESCRIPTION
       All "functions" mentioned here are passed as function pointers between
       libcrypto and the provider in OSSL_DISPATCH(3) arrays, in the call of
       the provider initialization function.  See "Provider" in provider(7)
       for a description of the initialization function. They are known as
       "upcalls".

       All these "functions" have a corresponding function type definition
       named OSSL_FUNC_{name}_fn, and a helper function to retrieve the
       function pointer from a OSSL_DISPATCH(3) element named
       OSSL_FUNC_{name}.  For example, the "function" core_gettable_params()
       has these:

        typedef OSSL_PARAM *
            (OSSL_FUNC_core_gettable_params_fn)(const OSSL_CORE_HANDLE *handle);
        static ossl_inline OSSL_NAME_core_gettable_params_fn
            OSSL_FUNC_core_gettable_params(const OSSL_DISPATCH *opf);

       OSSL_DISPATCH(3) arrays are indexed by numbers that are provided as
       macros in openssl-core_dispatch.h(7), as follows:

       For in (the OSSL_DISPATCH(3) array passed from libcrypto to the
       provider):

        core_gettable_params           OSSL_FUNC_CORE_GETTABLE_PARAMS
        core_get_params                OSSL_FUNC_CORE_GET_PARAMS
        core_thread_start              OSSL_FUNC_CORE_THREAD_START
        core_get_libctx                OSSL_FUNC_CORE_GET_LIBCTX
        core_new_error                 OSSL_FUNC_CORE_NEW_ERROR
        core_set_error_debug           OSSL_FUNC_CORE_SET_ERROR_DEBUG
        core_vset_error                OSSL_FUNC_CORE_VSET_ERROR
        core_obj_add_sigid             OSSL_FUNC_CORE_OBJ_ADD_SIGID
        core_obj_create                OSSL_FUNC_CORE_OBJ_CREATE
        CRYPTO_malloc                  OSSL_FUNC_CRYPTO_MALLOC
        CRYPTO_zalloc                  OSSL_FUNC_CRYPTO_ZALLOC
        CRYPTO_free                    OSSL_FUNC_CRYPTO_FREE
        CRYPTO_clear_free              OSSL_FUNC_CRYPTO_CLEAR_FREE
        CRYPTO_realloc                 OSSL_FUNC_CRYPTO_REALLOC
        CRYPTO_clear_realloc           OSSL_FUNC_CRYPTO_CLEAR_REALLOC
        CRYPTO_secure_malloc           OSSL_FUNC_CRYPTO_SECURE_MALLOC
        CRYPTO_secure_zalloc           OSSL_FUNC_CRYPTO_SECURE_ZALLOC
        CRYPTO_secure_free             OSSL_FUNC_CRYPTO_SECURE_FREE
        CRYPTO_secure_clear_free       OSSL_FUNC_CRYPTO_SECURE_CLEAR_FREE
        CRYPTO_secure_allocated        OSSL_FUNC_CRYPTO_SECURE_ALLOCATED
        BIO_new_file                   OSSL_FUNC_BIO_NEW_FILE
        BIO_new_mem_buf                OSSL_FUNC_BIO_NEW_MEMBUF
        BIO_read_ex                    OSSL_FUNC_BIO_READ_EX
        BIO_write_ex                   OSSL_FUNC_BIO_WRITE_EX
        BIO_up_ref                     OSSL_FUNC_BIO_UP_REF
        BIO_free                       OSSL_FUNC_BIO_FREE
        BIO_vprintf                    OSSL_FUNC_BIO_VPRINTF
        BIO_vsnprintf                  OSSL_FUNC_BIO_VSNPRINTF
        BIO_puts                       OSSL_FUNC_BIO_PUTS
        BIO_gets                       OSSL_FUNC_BIO_GETS
        BIO_ctrl                       OSSL_FUNC_BIO_CTRL
        OPENSSL_cleanse                OSSL_FUNC_OPENSSL_CLEANSE
        OSSL_SELF_TEST_set_callback    OSSL_FUNC_SELF_TEST_CB
        ossl_rand_get_entropy          OSSL_FUNC_GET_ENTROPY
        ossl_rand_cleanup_entropy      OSSL_FUNC_CLEANUP_ENTROPY
        ossl_rand_get_nonce            OSSL_FUNC_GET_NONCE
        ossl_rand_cleanup_nonce        OSSL_FUNC_CLEANUP_NONCE
        provider_register_child_cb     OSSL_FUNC_PROVIDER_REGISTER_CHILD_CB
        provider_deregister_child_cb   OSSL_FUNC_PROVIDER_DEREGISTER_CHILD_CB
        provider_name                  OSSL_FUNC_PROVIDER_NAME
        provider_get0_provider_ctx     OSSL_FUNC_PROVIDER_GET0_PROVIDER_CTX
        provider_get0_dispatch         OSSL_FUNC_PROVIDER_GET0_DISPATCH
        provider_up_ref                OSSL_FUNC_PROVIDER_UP_REF
        provider_free                  OSSL_FUNC_PROVIDER_FREE

       For *out (the OSSL_DISPATCH(3) array passed from the provider to
       libcrypto):

        provider_teardown              OSSL_FUNC_PROVIDER_TEARDOWN
        provider_gettable_params       OSSL_FUNC_PROVIDER_GETTABLE_PARAMS
        provider_get_params            OSSL_FUNC_PROVIDER_GET_PARAMS
        provider_query_operation       OSSL_FUNC_PROVIDER_QUERY_OPERATION
        provider_unquery_operation     OSSL_FUNC_PROVIDER_UNQUERY_OPERATION
        provider_get_reason_strings    OSSL_FUNC_PROVIDER_GET_REASON_STRINGS
        provider_get_capabilities      OSSL_FUNC_PROVIDER_GET_CAPABILITIES
        provider_self_test             OSSL_FUNC_PROVIDER_SELF_TEST

   Core functions
       core_gettable_params() returns a constant array of descriptor
       OSSL_PARAM(3), for parameters that core_get_params() can handle.

       core_get_params() retrieves parameters from the core for the given
       handle.  See "Core parameters" below for a description of currently
       known parameters.

       The core_thread_start() function informs the core that the provider has
       stated an interest in the current thread. The core will inform the
       provider when the thread eventually stops. It must be passed the handle
       for this provider, as well as a callback handfn which will be called
       when the thread stops. The callback will subsequently be called, with
       the supplied argument arg, from the thread that is stopping and gets
       passed the provider context as an argument. This may be useful to
       perform thread specific clean up such as freeing thread local
       variables.

       core_get_libctx() retrieves the core context in which the library
       object for the current provider is stored, accessible through the
       handle.  This function is useful only for built-in providers such as
       the default provider. Never cast this to OSSL_LIB_CTX in a provider
       that is not built-in as the OSSL_LIB_CTX of the library loading the
       provider might be a completely different structure than the
       OSSL_LIB_CTX of the library the provider is linked to. Use
       OSSL_LIB_CTX_new_child(3) instead to obtain a proper library context
       that is linked to the application library context.

       core_new_error(), core_set_error_debug() and core_vset_error() are
       building blocks for reporting an error back to the core, with reference
       to the handle.

       core_new_error()
           allocates a new thread specific error record.

           This corresponds to the OpenSSL function ERR_new(3).

       core_set_error_debug()
           sets  debugging  information  in  the current thread specific error
           record.  The debugging information includes the name  of  the  file
           file,  the  line  line  and  the function name func where the error
           occurred.

           This corresponds to the OpenSSL function ERR_set_debug(3).

       core_vset_error()
           sets the reason for the error, along with any addition  data.   The
           reason  is  a  number defined by the provider and used to index the
           reason      strings      table       that's       returned       by
           provider_get_reason_strings().   The  additional data is given as a
           format string fmt and a set of arguments args, which are treated in
           the same manner as with BIO_vsnprintf().  file and line may also be
           passed  to  indicate  exactly  where  the  error  occurred  or  was
           reported.

           This corresponds to the OpenSSL function ERR_vset_error(3).

       The core_obj_create() function registers a new OID and associated short
       name  sn  and  long  name ln for the given handle. It is similar to the
       OpenSSL function OBJ_create(3) except that it returns 1 on success or 0
       on failure.  It will treat as success the case where  the  OID  already
       exists (even if the short name sn or long name ln provided as arguments
       differ  from  those associated with the existing OID, in which case the
       new names are not associated).  This function is not thread safe.

       The core_obj_add_sigid() function registers a new  composite  signature
       algorithm  (sign_name)  consisting of an underlying signature algorithm
       (pkey_name) and digest algorithm (digest_name) for the given handle. It
       assumes that the OIDs for the composite signature algorithm as well  as
       for  the  underlying signature and digest algorithms are either already
       known  to  OpenSSL  or   have   been   registered   via   a   call   to
       core_obj_create().    It    corresponds   to   the   OpenSSL   function
       OBJ_add_sigid(3), except that the objects are identified by name rather
       than a numeric NID. Any name (OID, short name or long name) can be used
       to identify the object. It will treat as success  the  case  where  the
       composite  signature  algorithm  already  exists  (even  if  registered
       against a different underlying  signature  or  digest  algorithm).  For
       digest_name,  NULL  or  an  empty  string  is permissible for signature
       algorithms that do not need a digest to operate correctly. The function
       returns 1 on success or 0 on failure.   This  function  is  not  thread
       safe.

       CRYPTO_malloc(),  CRYPTO_zalloc(),  CRYPTO_free(), CRYPTO_clear_free(),
       CRYPTO_realloc(),    CRYPTO_clear_realloc(),    CRYPTO_secure_malloc(),
       CRYPTO_secure_zalloc(),                           CRYPTO_secure_free(),
       CRYPTO_secure_clear_free(), CRYPTO_secure_allocated(),  BIO_new_file(),
       BIO_new_mem_buf(),    BIO_read_ex(),    BIO_write_ex(),   BIO_up_ref(),
       BIO_free(),  BIO_vprintf(),  BIO_vsnprintf(),  BIO_gets(),  BIO_puts(),
       BIO_ctrl(),   OPENSSL_cleanse()   and  OPENSSL_hexstr2buf()  correspond
       exactly to the public functions with the same name.   As  a  matter  of
       fact,  the  pointers in the OSSL_DISPATCH(3) array are typically direct
       pointers to those public functions. Note that the BIO functions take an
       OSSL_CORE_BIO type rather than the standard BIO type. This is to ensure
       that a provider does not mix BIOs from the core with BIOs used  on  the
       provider      side      (the      two      are     not     compatible).
       OSSL_SELF_TEST_set_callback() is used to set an optional callback  that
       can be passed into a provider. This may be ignored by a provider.

       get_entropy()  retrieves  seeding  material  from the operating system.
       The seeding material will have at least entropy bytes of randomness and
       the output will have at least min_len and at most max_len  bytes.   The
       buffer  address is stored in *pout and the buffer length is returned to
       the caller.  On error, zero is returned.

       cleanup_entropy() is used to clean up and free the buffer  returned  by
       get_entropy().  The entropy pointer returned by get_entropy() is passed
       in buf and its length in len.

       get_nonce() retrieves a nonce using the passed salt parameter of length
       salt_len  and  operating  system specific information.  The salt should
       contain uniquely identifying information and this is  included,  in  an
       unspecified  manner,  as part of the output.  The output is stored in a
       buffer which contains at least min_len and at most max_len bytes.   The
       buffer address is stored in *pout and the buffer length returned to the
       caller.  On error, zero is returned.

       cleanup_nonce()  is  used  to  clean up and free the buffer returned by
       get_nonce().  The nonce pointer returned by get_nonce()  is  passed  in
       buf and its length in len.

       provider_register_child_cb()  registers  callbacks  for  being informed
       about the loading and  unloading  of  providers  in  the  application's
       library  context.   handle is this provider's handle and cbdata is this
       provider's data that will be passed back to the callbacks. It returns 1
       on success or 0 otherwise. These callbacks may be called while  holding
       locks   in   libcrypto.  In  order  to  avoid  deadlocks  the  callback
       implementation must not be long running and must not call other OpenSSL
       API functions or upcalls.

       create_cb is a callback that will be called  when  a  new  provider  is
       loaded  into  the  application's library context. It is also called for
       any providers that are already loaded at the point that  this  callback
       is registered. The callback is passed the handle being used for the new
       provider  being  loadded  and this provider's data in cbdata. It should
       return 1 on success or 0 on failure.

       remove_cb is a callback that will be called  when  a  new  provider  is
       unloaded  from  the  application's  library  context.  It is passed the
       handle being used for the provider being unloaded and  this  provider's
       data in cbdata. It should return 1 on success or 0 on failure.

       global_props_cb  is  a  callback  that  will  be called when the global
       properties from the parent  library  context  are  changed.  It  should
       return 1 on success or 0 on failure.

       provider_deregister_child_cb()    unregisters    callbacks   previously
       registered         via         provider_register_child_cb().         If
       provider_register_child_cb()       has       been      called      then
       provider_deregister_child_cb() should be called at or before the  point
       that this provider's teardown function is called.

       provider_name()  returns  a  string  giving  the  name  of the provider
       identified by handle.

       provider_get0_provider_ctx()  returns  the  provider  context  that  is
       associated with the provider identified by prov.

       provider_get0_dispatch()  gets  the  dispatch  table  registered by the
       provider identified by prov when it initialised.

       provider_up_ref() increments the reference count on the provider  prov.
       If  activate  is  nonzero then the provider is also loaded if it is not
       already loaded. It returns 1 on success or 0 on failure.

       provider_free() decrements the reference count on the provider prov. If
       deactivate is nonzero then the provider is also unloaded if it  is  not
       already loaded. It returns 1 on success or 0 on failure.

   Provider functions
       provider_teardown()  is called when a provider is shut down and removed
       from the core's provider store.  It must free the passed provctx.

       provider_gettable_params() should return a constant array of descriptor
       OSSL_PARAM(3), for parameters that provider_get_params() can handle.

       provider_get_params() should process the  OSSL_PARAM(3)  array  params,
       setting the values of the parameters it understands.

       provider_query_operation()  should  return a constant OSSL_ALGORITHM(3)
       that corresponds to the given operation_id.  It should indicate if  the
       core  may  store  a  reference  to this array by setting *no_store to 0
       (core may store a reference) or 1 (core may not store a reference).

       provider_unquery_operation() informs the provider that the result of  a
       provider_query_operation()  is no longer directly required and that the
       function pointers have been copied.  The operation_id should match that
       passed to provider_query_operation() and  algs  should  be  its  return
       value.

       provider_get_reason_strings()  should  return  a  constant OSSL_ITEM(3)
       array that provides reason strings for reason codes  the  provider  may
       use when reporting errors using core_put_error().

       The  provider_get_capabilities()  function  should call the callback cb
       passing it a set of OSSL_PARAM(3)s and  the  caller  supplied  argument
       arg.  The  OSSL_PARAM(3)s  should  provide details about the capability
       with the name  given  in  the  capability  argument  relevant  for  the
       provider  context provctx. If a provider supports multiple capabilities
       with the given name then it may call the callback multiple  times  (one
       for  each  capability).  Capabilities  can be useful for describing the
       services that a  provider  can  offer.  For  further  details  see  the
       "CAPABILITIES"  section  below.  It  should return 1 on success or 0 on
       error.

       The provider_self_test() function should perform known answer tests  on
       a  subset  of  the  algorithms  that  it  uses, and may also verify the
       integrity of the provider module. It should return 1 on success or 0 on
       error. It will return 1 if this function is not used.

       None of these functions are mandatory, but a provider is fairly useless
       without      at       least       provider_query_operation(),       and
       provider_gettable_params()  is  fairly  useless  if  not accompanied by
       provider_get_params().

   Provider parameters
       provider_get_params() can return the following provider  parameters  to
       the core:

       "name" (OSSL_PROV_PARAM_NAME) <UTF8 ptr>
           This  points  to  a  string  that should give a unique name for the
           provider.

       "version" (OSSL_PROV_PARAM_VERSION) <UTF8 ptr>
           This points to a string that is a version  number  associated  with
           this provider.  OpenSSL in-built providers use OPENSSL_VERSION_STR,
           but this may be different for any third party provider. This string
           is for informational purposes only.

       "buildinfo" (OSSL_PROV_PARAM_BUILDINFO) <UTF8 ptr>
           This points to a string that is a build information associated with
           this      provider.      OpenSSL     in-built     providers     use
           OPENSSL_FULL_VERSION_STR, but this may be different for  any  third
           party provider.

       "status" (OSSL_PROV_PARAM_STATUS) <unsigned integer>
           This  returns  0  if  the  provider  has  entered  an  error state,
           otherwise it returns 1.

       provider_gettable_params() should return the above parameters.

   Core parameters
       core_get_params() can retrieve the following core parameters  for  each
       provider:

       "openssl-version" (OSSL_PROV_PARAM_CORE_VERSION) <UTF8 string ptr>
           This points to the OpenSSL libraries' full version string, i.e. the
           string expanded from the macro OPENSSL_VERSION_STR.

       "provider-name" (OSSL_PROV_PARAM_CORE_PROV_NAME) <UTF8 string ptr>
           This  points  to  the  OpenSSL  libraries' idea of what the calling
           provider is named.

       "module-filename" (OSSL_PROV_PARAM_CORE_MODULE_FILENAME) <UTF8 string
       ptr>
           This points to  a  string  containing  the  full  filename  of  the
           providers module file.

       Additionally,  provider  specific  configuration  parameters  from  the
       config file are available, in dotted name form.  The dotted  name  form
       is  a  concatenation  of  section  names  and final config command name
       separated by periods.

       For example, let's say we have the following config example:

        config_diagnostics = 1
        openssl_conf = openssl_init

        [openssl_init]
        providers = providers_sect

        [providers_sect]
        foo = foo_sect

        [foo_sect]
        activate = 1
        data1 = 2
        data2 = str
        more = foo_more

        [foo_more]
        data3 = foo,bar

       The provider will have these additional parameters available:

       "activate"
           pointing at the string "1"

       "data1"
           pointing at the string "2"

       "data2"
           pointing at the string "str"

       "more.data3"
           pointing at the string "foo,bar"

       For more information  on  handling  parameters,  see  OSSL_PARAM(3)  as
       OSSL_PARAM_int(3).

CAPABILITIES
       Capabilities  describe  some of the services that a provider can offer.
       Applications can query the capabilities to discover those services.

       "TLS-GROUP" Capability

       The "TLS-GROUP" capability can be queried by  libssl  to  discover  the
       list  of  TLS  groups that a provider can support. Each group supported
       can be used for key exchange (KEX) or key  encapsulation  method  (KEM)
       during  a  TLS  handshake.   TLS  clients can advertise the list of TLS
       groups they support in the supported_groups extension, and TLS  servers
       can  select  a  group  from the offered list that they also support. In
       this way a provider can add to the list of groups that  libssl  already
       supports with additional ones.

       Each  TLS  group  that  a provider supports should be described via the
       callback passed in through the provider_get_capabilities function. Each
       group should have the following details supplied  (all  are  mandatory,
       except OSSL_CAPABILITY_TLS_GROUP_IS_KEM):

       "tls-group-name" (OSSL_CAPABILITY_TLS_GROUP_NAME) <UTF8 string>
           The  name  of  the  group as given in the IANA TLS Supported Groups
           registry
           <https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-8>.

       "tls-group-name-internal" (OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL)
       <UTF8 string>
           The name of the group as known by the provider. This could  be  the
           same as the "tls-group-name", but does not have to be.

       "tls-group-id" (OSSL_CAPABILITY_TLS_GROUP_ID) <unsigned integer>
           The  TLS  group  id value as given in the IANA TLS Supported Groups
           registry.

       "tls-group-alg" (OSSL_CAPABILITY_TLS_GROUP_ALG) <UTF8 string>
           The name of a Key Management algorithm that the provider offers and
           that should be used with this group. Keys created should be able to
           support key exchange or key encapsulation method (KEM), as  implied
           by   the   optional   OSSL_CAPABILITY_TLS_GROUP_IS_KEM  flag.   The
           algorithm must support key and parameter generation as well as  the
           key/parameter generation parameter, OSSL_PKEY_PARAM_GROUP_NAME. The
           group name given via "tls-group-name-internal" above will be passed
           via  OSSL_PKEY_PARAM_GROUP_NAME  when  libssl  wishes  to  generate
           keys/parameters.

       "tls-group-sec-bits" (OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS)
       <unsigned integer>
           The number of bits of security offered by keys in this  group.  The
           number  of bits should be comparable with the ones given in table 2
           and 3 of the NIST SP800-57 document.

       "tls-group-is-kem" (OSSL_CAPABILITY_TLS_GROUP_IS_KEM) <unsigned
       integer>
           Boolean flag to describe  if  the  group  should  be  used  in  key
           exchange  (KEX)  mode  (0,  default) or in key encapsulation method
           (KEM) mode (1).

           This parameter is optional: if not specified, KEX mode  is  assumed
           as the default mode for the group.

           In  KEX  mode,  in  a  typical  Diffie-Hellman  fashion, both sides
           execute keygen then derive against the peer public key. To  operate
           in  KEX  mode,  the  group implementation must support the provider
           functions as described in provider-keyexch(7).

           In KEM mode, the client executes keygen and sends its  public  key,
           the  server  executes encapsulate using the client's public key and
           sends back the resulting ciphertext, finally  the  client  executes
           decapsulate  to  retrieve  the  same shared secret generated by the
           server's  encapsulate.  To  operate  in   KEM   mode,   the   group
           implementation  must support the provider functions as described in
           provider-kem(7).

           Both in KEX and KEM mode, the resulting shared secret is then  used
           according to the protocol specification.

       "tls-min-tls" (OSSL_CAPABILITY_TLS_GROUP_MIN_TLS) <integer>
       "tls-max-tls" (OSSL_CAPABILITY_TLS_GROUP_MAX_TLS) <integer>
       "tls-min-dtls" (OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS) <integer>
       "tls-max-dtls" (OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS) <integer>
           These  parameters  can  be used to describe the minimum and maximum
           TLS and DTLS versions supported by the group. The values equate  to
           the  on-the-wire  encoding of the various TLS versions. For example
           TLSv1.3 is  0x0304  (772  decimal),  and  TLSv1.2  is  0x0303  (771
           decimal).  A  0  indicates  that  there  is  no  defined minimum or
           maximum. A -1 indicates that the group should not be used  in  that
           protocol.

EXAMPLES
       This is an example of a simple provider made available as a dynamically
       loadable  module.  It implements the fictitious algorithm "FOO" for the
       fictitious operation "BAR".

        #include <malloc.h>
        #include <openssl/core.h>
        #include <openssl/core_dispatch.h>

        /* Errors used in this provider */
        #define E_MALLOC       1

        static const OSSL_ITEM reasons[] = {
            { E_MALLOC, "memory allocation failure" }.
            { 0, NULL } /* Termination */
        };

        /*
         * To ensure we get the function signature right, forward declare
         * them using function types provided by openssl/core_dispatch.h
         */
        OSSL_FUNC_bar_newctx_fn foo_newctx;
        OSSL_FUNC_bar_freectx_fn foo_freectx;
        OSSL_FUNC_bar_init_fn foo_init;
        OSSL_FUNC_bar_update_fn foo_update;
        OSSL_FUNC_bar_final_fn foo_final;

        OSSL_FUNC_provider_query_operation_fn p_query;
        OSSL_FUNC_provider_get_reason_strings_fn p_reasons;
        OSSL_FUNC_provider_teardown_fn p_teardown;

        OSSL_provider_init_fn OSSL_provider_init;

        OSSL_FUNC_core_put_error *c_put_error = NULL;

        /* Provider context */
        struct prov_ctx_st {
            OSSL_CORE_HANDLE *handle;
        }

        /* operation context for the algorithm FOO */
        struct foo_ctx_st {
            struct prov_ctx_st *provctx;
            int b;
        };

        static void *foo_newctx(void *provctx)
        {
            struct foo_ctx_st *fooctx = malloc(sizeof(*fooctx));

            if (fooctx != NULL)
                fooctx->provctx = provctx;
            else
                c_put_error(provctx->handle, E_MALLOC, __FILE__, __LINE__);
            return fooctx;
        }

        static void foo_freectx(void *fooctx)
        {
            free(fooctx);
        }

        static int foo_init(void *vfooctx)
        {
            struct foo_ctx_st *fooctx = vfooctx;

            fooctx->b = 0x33;
        }

        static int foo_update(void *vfooctx, unsigned char *in, size_t inl)
        {
            struct foo_ctx_st *fooctx = vfooctx;

            /* did you expect something serious? */
            if (inl == 0)
                return 1;
            for (; inl-- > 0; in++)
                *in ^= fooctx->b;
            return 1;
        }

        static int foo_final(void *vfooctx)
        {
            struct foo_ctx_st *fooctx = vfooctx;

            fooctx->b = 0x66;
        }

        static const OSSL_DISPATCH foo_fns[] = {
            { OSSL_FUNC_BAR_NEWCTX, (void (*)(void))foo_newctx },
            { OSSL_FUNC_BAR_FREECTX, (void (*)(void))foo_freectx },
            { OSSL_FUNC_BAR_INIT, (void (*)(void))foo_init },
            { OSSL_FUNC_BAR_UPDATE, (void (*)(void))foo_update },
            { OSSL_FUNC_BAR_FINAL, (void (*)(void))foo_final },
            { 0, NULL }
        };

        static const OSSL_ALGORITHM bars[] = {
            { "FOO", "provider=chumbawamba", foo_fns },
            { NULL, NULL, NULL }
        };

        static const OSSL_ALGORITHM *p_query(void *provctx, int operation_id,
                                             int *no_store)
        {
            switch (operation_id) {
            case OSSL_OP_BAR:
                return bars;
            }
            return NULL;
        }

        static const OSSL_ITEM *p_reasons(void *provctx)
        {
            return reasons;
        }

        static void p_teardown(void *provctx)
        {
            free(provctx);
        }

        static const OSSL_DISPATCH prov_fns[] = {
            { OSSL_FUNC_PROVIDER_TEARDOWN, (void (*)(void))p_teardown },
            { OSSL_FUNC_PROVIDER_QUERY_OPERATION, (void (*)(void))p_query },
            { OSSL_FUNC_PROVIDER_GET_REASON_STRINGS, (void (*)(void))p_reasons },
            { 0, NULL }
        };

        int OSSL_provider_init(const OSSL_CORE_HANDLE *handle,
                               const OSSL_DISPATCH *in,
                               const OSSL_DISPATCH **out,
                               void **provctx)
        {
            struct prov_ctx_st *pctx = NULL;

            for (; in->function_id != 0; in++)
                switch (in->function_id) {
                case OSSL_FUNC_CORE_PUT_ERROR:
                    c_put_error = OSSL_FUNC_core_put_error(in);
                    break;
                }

            *out = prov_fns;

            if ((pctx = malloc(sizeof(*pctx))) == NULL) {
                /*
                 * ALEA IACTA EST, if the core retrieves the reason table
                 * regardless, that string will be displayed, otherwise not.
                 */
                c_put_error(handle, E_MALLOC, __FILE__, __LINE__);
                return 0;
            }
            pctx->handle = handle;
            return 1;
        }

       This relies on a few things existing in openssl/core_dispatch.h:

        #define OSSL_OP_BAR            4711

        #define OSSL_FUNC_BAR_NEWCTX      1
        typedef void *(OSSL_FUNC_bar_newctx_fn)(void *provctx);
        static ossl_inline OSSL_FUNC_bar_newctx(const OSSL_DISPATCH *opf)
        { return (OSSL_FUNC_bar_newctx_fn *)opf->function; }

        #define OSSL_FUNC_BAR_FREECTX     2
        typedef void (OSSL_FUNC_bar_freectx_fn)(void *ctx);
        static ossl_inline OSSL_FUNC_bar_freectx(const OSSL_DISPATCH *opf)
        { return (OSSL_FUNC_bar_freectx_fn *)opf->function; }

        #define OSSL_FUNC_BAR_INIT        3
        typedef void *(OSSL_FUNC_bar_init_fn)(void *ctx);
        static ossl_inline OSSL_FUNC_bar_init(const OSSL_DISPATCH *opf)
        { return (OSSL_FUNC_bar_init_fn *)opf->function; }

        #define OSSL_FUNC_BAR_UPDATE      4
        typedef void *(OSSL_FUNC_bar_update_fn)(void *ctx,
                                              unsigned char *in, size_t inl);
        static ossl_inline OSSL_FUNC_bar_update(const OSSL_DISPATCH *opf)
        { return (OSSL_FUNC_bar_update_fn *)opf->function; }

        #define OSSL_FUNC_BAR_FINAL       5
        typedef void *(OSSL_FUNC_bar_final_fn)(void *ctx);
        static ossl_inline OSSL_FUNC_bar_final(const OSSL_DISPATCH *opf)
        { return (OSSL_FUNC_bar_final_fn *)opf->function; }

SEE ALSO
       provider(7)

HISTORY
       The concept of providers and everything surrounding them was introduced
       in OpenSSL 3.0.

COPYRIGHT
       Copyright 2019-2023 The OpenSSL Project Authors. All Rights Reserved.

       Licensed under the Apache License 2.0 (the "License").  You may not use
       this file except in compliance with the License.  You can obtain a copy
       in   the   file   LICENSE   in   the   source   distribution   or    at
       <https://www.openssl.org/source/license.html>.

3.0.13                            2025-09-18               PROVIDER-BASE(7SSL)

Generated by dwww version 1.16 on Tue Dec 16 14:21:46 CET 2025.