dwww Home | Manual pages | Find package

mmap(2)                       System Calls Manual                      mmap(2)

NAME
       mmap, munmap - map or unmap files or devices into memory

LIBRARY
       Standard C library (libc, -lc)

SYNOPSIS
       #include <sys/mman.h>

       void *mmap(void addr[.length], size_t length, int prot, int flags,
                  int fd, off_t offset);
       int munmap(void addr[.length], size_t length);

       See NOTES for information on feature test macro requirements.

DESCRIPTION
       mmap()  creates a new mapping in the virtual address space of the call-
       ing process.  The starting address for the new mapping is specified  in
       addr.   The  length argument specifies the length of the mapping (which
       must be greater than 0).

       If addr is NULL, then the kernel chooses the (page-aligned) address  at
       which to create the mapping; this is the most portable method of creat-
       ing  a new mapping.  If addr is not NULL, then the kernel takes it as a
       hint about where to place the mapping; on Linux, the kernel will pick a
       nearby page boundary (but always above or equal to the value  specified
       by /proc/sys/vm/mmap_min_addr) and attempt to create the mapping there.
       If another mapping already exists there, the kernel picks a new address
       that may or may not depend on the hint.  The address of the new mapping
       is returned as the result of the call.

       The contents of a file mapping (as opposed to an anonymous mapping; see
       MAP_ANONYMOUS  below),  are  initialized using length bytes starting at
       offset offset in the file (or other object) referred to by the file de-
       scriptor fd.  offset must be a multiple of the page size as returned by
       sysconf(_SC_PAGE_SIZE).

       After the mmap() call has returned, the file  descriptor,  fd,  can  be
       closed immediately without invalidating the mapping.

       The  prot  argument describes the desired memory protection of the map-
       ping (and must not conflict with the open mode of the file).  It is ei-
       ther PROT_NONE or the bitwise OR of one or more of the following flags:

       PROT_EXEC  Pages may be executed.

       PROT_READ  Pages may be read.

       PROT_WRITE Pages may be written.

       PROT_NONE  Pages may not be accessed.

   The flags argument
       The flags argument determines whether updates to the mapping are  visi-
       ble to other processes mapping the same region, and whether updates are
       carried through to the underlying file.  This behavior is determined by
       including exactly one of the following values in flags:

       MAP_SHARED
              Share this mapping.  Updates to the mapping are visible to other
              processes  mapping  the  same  region, and (in the case of file-
              backed mappings) are carried through  to  the  underlying  file.
              (To  precisely  control  when updates are carried through to the
              underlying file requires the use of msync(2).)

       MAP_SHARED_VALIDATE (since Linux 4.15)
              This flag provides the same behavior as MAP_SHARED  except  that
              MAP_SHARED mappings ignore unknown flags in flags.  By contrast,
              when  creating  a  mapping using MAP_SHARED_VALIDATE, the kernel
              verifies all passed flags are known and fails the  mapping  with
              the  error  EOPNOTSUPP  for unknown flags.  This mapping type is
              also required to be  able  to  use  some  mapping  flags  (e.g.,
              MAP_SYNC).

       MAP_PRIVATE
              Create  a private copy-on-write mapping.  Updates to the mapping
              are not visible to other processes mapping the  same  file,  and
              are  not carried through to the underlying file.  It is unspeci-
              fied whether changes made to the file after the mmap() call  are
              visible in the mapped region.

       Both  MAP_SHARED  and  MAP_PRIVATE  are  described  in POSIX.1-2001 and
       POSIX.1-2008.  MAP_SHARED_VALIDATE is a Linux extension.

       In addition, zero or more of the following values can be ORed in flags:

       MAP_32BIT (since Linux 2.4.20, 2.6)
              Put the mapping into the first 2 Gigabytes of  the  process  ad-
              dress  space.  This flag is supported only on x86-64, for 64-bit
              programs.  It was added to allow thread stacks to  be  allocated
              somewhere in the first 2 GB of memory, so as to improve context-
              switch  performance  on  some  early  64-bit processors.  Modern
              x86-64 processors no longer have this  performance  problem,  so
              use  of  this  flag  is  not  required  on  those  systems.  The
              MAP_32BIT flag is ignored when MAP_FIXED is set.

       MAP_ANON
              Synonym for MAP_ANONYMOUS; provided for compatibility with other
              implementations.

       MAP_ANONYMOUS
              The mapping is not backed by any file; its contents are initial-
              ized to zero.  The fd argument is ignored; however, some  imple-
              mentations require fd to be -1 if MAP_ANONYMOUS (or MAP_ANON) is
              specified,  and  portable  applications should ensure this.  The
              offset argument should be zero.  Support  for  MAP_ANONYMOUS  in
              conjunction with MAP_SHARED was added in Linux 2.4.

       MAP_DENYWRITE
              This  flag  is ignored.  (Long ago—Linux 2.0 and earlier—it sig-
              naled that attempts to write to the underlying file should  fail
              with  ETXTBSY.   But  this was a source of denial-of-service at-
              tacks.)

       MAP_EXECUTABLE
              This flag is ignored.

       MAP_FILE
              Compatibility flag.  Ignored.

       MAP_FIXED
              Don't interpret addr as a hint: place  the  mapping  at  exactly
              that address.  addr must be suitably aligned: for most architec-
              tures  a  multiple of the page size is sufficient; however, some
              architectures may impose additional restrictions.  If the memory
              region specified by addr and length overlaps pages of any exist-
              ing mapping(s), then the overlapped part of  the  existing  map-
              ping(s)  will  be discarded.  If the specified address cannot be
              used, mmap() will fail.

              Software that aspires to be portable should  use  the  MAP_FIXED
              flag  with  care,  keeping  in  mind  that the exact layout of a
              process's memory mappings is allowed to change significantly be-
              tween Linux versions, C library versions, and  operating  system
              releases.  Carefully read the discussion of this flag in NOTES!

       MAP_FIXED_NOREPLACE (since Linux 4.17)
              This  flag  provides  behavior that is similar to MAP_FIXED with
              respect  to  the  addr  enforcement,   but   differs   in   that
              MAP_FIXED_NOREPLACE  never  clobbers a preexisting mapped range.
              If the requested range would collide with an  existing  mapping,
              then  this  call  fails  with  the  error EEXIST.  This flag can
              therefore be used as a way to atomically (with respect to  other
              threads)  attempt  to map an address range: one thread will suc-
              ceed; all others will report failure.

              Note  that  older   kernels   which   do   not   recognize   the
              MAP_FIXED_NOREPLACE flag will typically (upon detecting a colli-
              sion  with a preexisting mapping) fall back to a “non-MAP_FIXED”
              type of behavior: they will return an address that is  different
              from  the  requested  address.   Therefore,  backward-compatible
              software should check the returned address against the requested
              address.

       MAP_GROWSDOWN
              This flag is used for stacks.  It indicates to the  kernel  vir-
              tual  memory  system  that the mapping should extend downward in
              memory.  The return address is one page lower  than  the  memory
              area  that  is actually created in the process's virtual address
              space.  Touching an address in the "guard" page below  the  map-
              ping  will cause the mapping to grow by a page.  This growth can
              be repeated until the mapping grows to within a page of the high
              end of the next lower  mapping,  at  which  point  touching  the
              "guard" page will result in a SIGSEGV signal.

       MAP_HUGETLB (since Linux 2.6.32)
              Allocate  the  mapping using "huge" pages.  See the Linux kernel
              source  file  Documentation/admin-guide/mm/hugetlbpage.rst   for
              further information, as well as NOTES, below.

       MAP_HUGE_2MB
       MAP_HUGE_1GB (since Linux 3.8)
              Used  in  conjunction  with  MAP_HUGETLB  to  select alternative
              hugetlb page sizes (respectively, 2 MB and 1 GB) on systems that
              support multiple hugetlb page sizes.

              More generally, the desired huge page size can be configured  by
              encoding  the  base-2  logarithm of the desired page size in the
              six bits at the offset MAP_HUGE_SHIFT.  (A value of zero in this
              bit field provides the default huge page size; the default  huge
              page  size  can be discovered via the Hugepagesize field exposed
              by /proc/meminfo.)  Thus, the above two  constants  are  defined
              as:

                  #define MAP_HUGE_2MB    (21 << MAP_HUGE_SHIFT)
                  #define MAP_HUGE_1GB    (30 << MAP_HUGE_SHIFT)

              The  range  of  huge page sizes that are supported by the system
              can be discovered by listing  the  subdirectories  in  /sys/ker-
              nel/mm/hugepages.

       MAP_LOCKED (since Linux 2.5.37)
              Mark the mapped region to be locked in the same way as mlock(2).
              This  implementation  will  try to populate (prefault) the whole
              range but the mmap() call  doesn't  fail  with  ENOMEM  if  this
              fails.   Therefore  major  faults might happen later on.  So the
              semantic is not as strong as mlock(2).  One  should  use  mmap()
              plus  mlock(2)  when  major  faults are not acceptable after the
              initialization of the mapping.  The MAP_LOCKED flag  is  ignored
              in older kernels.

       MAP_NONBLOCK (since Linux 2.5.46)
              This  flag  is meaningful only in conjunction with MAP_POPULATE.
              Don't perform read-ahead: create page tables  entries  only  for
              pages that are already present in RAM.  Since Linux 2.6.23, this
              flag  causes  MAP_POPULATE to do nothing.  One day, the combina-
              tion of MAP_POPULATE and MAP_NONBLOCK may be reimplemented.

       MAP_NORESERVE
              Do not reserve swap space for this mapping.  When swap space  is
              reserved,  one  has  the guarantee that it is possible to modify
              the mapping.  When swap space is  not  reserved  one  might  get
              SIGSEGV  upon  a  write if no physical memory is available.  See
              also the discussion of the  file  /proc/sys/vm/overcommit_memory
              in  proc(5).   Before  Linux  2.6, this flag had effect only for
              private writable mappings.

       MAP_POPULATE (since Linux 2.5.46)
              Populate (prefault) page tables for a mapping.  For a file  map-
              ping, this causes read-ahead on the file.  This will help to re-
              duce  blocking  on  page  faults later.  The mmap() call doesn't
              fail if the mapping cannot be populated  (for  example,  due  to
              limitations  on  the  number  of  mapped  huge  pages when using
              MAP_HUGETLB).  Support for MAP_POPULATE in conjunction with pri-
              vate mappings was added in Linux 2.6.23.

       MAP_STACK (since Linux 2.6.27)
              Allocate the mapping at an address suitable  for  a  process  or
              thread stack.

              This  flag is currently a no-op on Linux.  However, by employing
              this flag, applications can ensure that they  transparently  ob-
              tain support if the flag is implemented in the future.  Thus, it
              is  used  in the glibc threading implementation to allow for the
              fact that some architectures may (later) require special  treat-
              ment  for  stack  allocations.   A further reason to employ this
              flag is portability: MAP_STACK exists (and  has  an  effect)  on
              some other systems (e.g., some of the BSDs).

       MAP_SYNC (since Linux 4.15)
              This flag is available only with the MAP_SHARED_VALIDATE mapping
              type;  mappings  of  type  MAP_SHARED  will silently ignore this
              flag.  This flag is supported only for files supporting DAX (di-
              rect mapping of persistent memory).  For other files, creating a
              mapping with this flag results in an EOPNOTSUPP error.

              Shared file mappings with this flag provide the  guarantee  that
              while some memory is mapped writable in the address space of the
              process,  it will be visible in the same file at the same offset
              even after the system crashes or is  rebooted.   In  conjunction
              with  the  use  of  appropriate  CPU instructions, this provides
              users of such mappings with a more efficient way of making  data
              modifications persistent.

       MAP_UNINITIALIZED (since Linux 2.6.33)
              Don't  clear  anonymous pages.  This flag is intended to improve
              performance on embedded devices.  This flag is honored  only  if
              the  kernel was configured with the CONFIG_MMAP_ALLOW_UNINITIAL-
              IZED option.  Because of the security implications, that  option
              is  normally  enabled  only  on  embedded devices (i.e., devices
              where one has complete control of the contents of user memory).

       Of the above flags, only MAP_FIXED is  specified  in  POSIX.1-2001  and
       POSIX.1-2008.  However, most systems also support MAP_ANONYMOUS (or its
       synonym MAP_ANON).

   munmap()
       The munmap() system call deletes the mappings for the specified address
       range,  and  causes further references to addresses within the range to
       generate invalid memory references.  The region is  also  automatically
       unmapped  when  the  process is terminated.  On the other hand, closing
       the file descriptor does not unmap the region.

       The address addr must be a multiple of the page size (but  length  need
       not  be).   All  pages containing a part of the indicated range are un-
       mapped, and subsequent references to these pages will generate SIGSEGV.
       It is not an error if the indicated range does not contain  any  mapped
       pages.

RETURN VALUE
       On success, mmap() returns a pointer to the mapped area.  On error, the
       value  MAP_FAILED  (that is, (void *) -1) is returned, and errno is set
       to indicate the error.

       On success, munmap() returns 0.  On failure, it returns -1,  and  errno
       is set to indicate the error (probably to EINVAL).

ERRORS
       EACCES A  file descriptor refers to a non-regular file.  Or a file map-
              ping was  requested,  but  fd  is  not  open  for  reading.   Or
              MAP_SHARED  was  requested  and PROT_WRITE is set, but fd is not
              open in read/write (O_RDWR) mode.  Or PROT_WRITE is set, but the
              file is append-only.

       EAGAIN The file has been locked, or too much  memory  has  been  locked
              (see setrlimit(2)).

       EBADF  fd  is  not  a  valid file descriptor (and MAP_ANONYMOUS was not
              set).

       EEXIST MAP_FIXED_NOREPLACE was specified in flags, and the  range  cov-
              ered by addr and length clashes with an existing mapping.

       EINVAL We don't like addr, length, or offset (e.g., they are too large,
              or not aligned on a page boundary).

       EINVAL (since Linux 2.6.12) length was 0.

       EINVAL flags    contained   none   of   MAP_PRIVATE,   MAP_SHARED,   or
              MAP_SHARED_VALIDATE.

       ENFILE The system-wide limit on the total number of open files has been
              reached.

       ENODEV The underlying filesystem of the specified file does not support
              memory mapping.

       ENOMEM No memory is available.

       ENOMEM The process's maximum number of mappings  would  have  been  ex-
              ceeded.   This error can also occur for munmap(), when unmapping
              a region in the middle of an existing mapping,  since  this  re-
              sults in two smaller mappings on either side of the region being
              unmapped.

       ENOMEM (since  Linux 4.7) The process's RLIMIT_DATA limit, described in
              getrlimit(2), would have been exceeded.

       ENOMEM We don't like addr, because it exceeds the virtual address space
              of the CPU.

       EOVERFLOW
              On 32-bit architecture together with the  large  file  extension
              (i.e.,  using 64-bit off_t): the number of pages used for length
              plus number of pages used for  offset  would  overflow  unsigned
              long (32 bits).

       EPERM  The prot argument asks for PROT_EXEC but the mapped area belongs
              to a file on a filesystem that was mounted no-exec.

       EPERM  The operation was prevented by a file seal; see fcntl(2).

       EPERM  The MAP_HUGETLB flag was specified, but the caller was not priv-
              ileged  (did  not have the CAP_IPC_LOCK capability) and is not a
              member of the sysctl_hugetlb_shm_group group; see  the  descrip-
              tion of /proc/sys/vm/sysctl_hugetlb_shm_group in proc_sys(5).

       ETXTBSY
              MAP_DENYWRITE was set but the object specified by fd is open for
              writing.

       Use of a mapped region can result in these signals:

       SIGSEGV
              Attempted write into a region mapped as read-only.

       SIGBUS Attempted  access  to  a page of the buffer that lies beyond the
              end of the mapped file.  For an explanation of the treatment  of
              the  bytes  in  the page that corresponds to the end of a mapped
              file that is not a multiple of the page size, see NOTES.

ATTRIBUTES
       For an explanation of the terms  used  in  this  section,  see  attrib-
       utes(7).
       ┌───────────────────────────────────────────┬───────────────┬─────────┐
       │ Interface                                 Attribute     Value   │
       ├───────────────────────────────────────────┼───────────────┼─────────┤
       │ mmap(), munmap()                          │ Thread safety │ MT-Safe │
       └───────────────────────────────────────────┴───────────────┴─────────┘

VERSIONS
       On   some  hardware  architectures  (e.g.,  i386),  PROT_WRITE  implies
       PROT_READ.  It is  architecture  dependent  whether  PROT_READ  implies
       PROT_EXEC  or  not.   Portable  programs should always set PROT_EXEC if
       they intend to execute code in the new mapping.

       The portable way to create a mapping is to specify addr  as  0  (NULL),
       and  omit  MAP_FIXED  from flags.  In this case, the system chooses the
       address for the mapping; the address is chosen so as  not  to  conflict
       with any existing mapping, and will not be 0.  If the MAP_FIXED flag is
       specified,  and  addr  is  0  (NULL), then the mapped address will be 0
       (NULL).

       Certain flags constants are  defined  only  if  suitable  feature  test
       macros  are  defined  (possibly by default): _DEFAULT_SOURCE with glibc
       2.19 or later; or _BSD_SOURCE or _SVID_SOURCE in glibc  2.19  and  ear-
       lier.   (Employing  _GNU_SOURCE also suffices, and requiring that macro
       specifically would have been more logical, since these  flags  are  all
       Linux-specific.)  The relevant flags are: MAP_32BIT, MAP_ANONYMOUS (and
       the   synonym   MAP_ANON),   MAP_DENYWRITE,  MAP_EXECUTABLE,  MAP_FILE,
       MAP_GROWSDOWN, MAP_HUGETLB,  MAP_LOCKED,  MAP_NONBLOCK,  MAP_NORESERVE,
       MAP_POPULATE, and MAP_STACK.

   C library/kernel differences
       This  page describes the interface provided by the glibc mmap() wrapper
       function.  Originally, this function invoked a system call of the  same
       name.   Since  Linux  2.4,  that  system  call  has  been superseded by
       mmap2(2), and  nowadays  the  glibc  mmap()  wrapper  function  invokes
       mmap2(2) with a suitably adjusted value for offset.

STANDARDS
       POSIX.1-2008.

HISTORY
       POSIX.1-2001, SVr4, 4.4BSD.

       On POSIX systems on which mmap(), msync(2), and munmap() are available,
       _POSIX_MAPPED_FILES is defined in <unistd.h> to a value greater than 0.
       (See also sysconf(3).)

NOTES
       Memory  mapped by mmap() is preserved across fork(2), with the same at-
       tributes.

       A file is mapped in multiples of the page size.  For a file that is not
       a multiple of the page size, the remaining bytes in the partial page at
       the end of the mapping are zeroed when  mapped,  and  modifications  to
       that  region  are  not written out to the file.  The effect of changing
       the size of the underlying file of a mapping on the pages  that  corre-
       spond to added or removed regions of the file is unspecified.

       An  application  can  determine  which pages of a mapping are currently
       resident in the buffer/page cache using mincore(2).

   Using MAP_FIXED safely
       The only safe use for MAP_FIXED is where the address range specified by
       addr and length was previously reserved using another  mapping;  other-
       wise,  the  use  of  MAP_FIXED is hazardous because it forcibly removes
       preexisting mappings, making it easy for  a  multithreaded  process  to
       corrupt its own address space.

       For  example, suppose that thread A looks through /proc/pid/maps in or-
       der to locate an unused address range that it can map using  MAP_FIXED,
       while thread B simultaneously acquires part or all of that same address
       range.  When thread A subsequently employs mmap(MAP_FIXED), it will ef-
       fectively clobber the mapping that thread B created.  In this scenario,
       thread  B  need  not create a mapping directly; simply making a library
       call that, internally, uses dlopen(3) to load  some  other  shared  li-
       brary,  will suffice.  The dlopen(3) call will map the library into the
       process's address space.  Furthermore, almost any library call  may  be
       implemented  in  a  way that adds memory mappings to the address space,
       either with this technique, or by simply allocating  memory.   Examples
       include  brk(2),  malloc(3),  pthread_create(3),  and the PAM libraries
       ]8;;http://www.linux-pam.org\http://www.linux-pam.org]8;;\.

       Since Linux 4.17, a multithreaded program can use  the  MAP_FIXED_NORE-
       PLACE  flag to avoid the hazard described above when attempting to cre-
       ate a mapping at a fixed address that has not been reserved by a preex-
       isting mapping.

   Timestamps changes for file-backed mappings
       For file-backed mappings, the st_atime field for the mapped file may be
       updated at any time between the mmap() and the corresponding unmapping;
       the first reference to a mapped page will update the field  if  it  has
       not been already.

       The  st_ctime  and st_mtime field for a file mapped with PROT_WRITE and
       MAP_SHARED will be updated after a write to the mapped region, and  be-
       fore  a  subsequent  msync(2) with the MS_SYNC or MS_ASYNC flag, if one
       occurs.

   Huge page (Huge TLB) mappings
       For mappings that employ huge pages, the requirements for the arguments
       of mmap() and munmap() differ somewhat from the requirements  for  map-
       pings that use the native system page size.

       For mmap(), offset must be a multiple of the underlying huge page size.
       The system automatically aligns length to be a multiple of the underly-
       ing huge page size.

       For  munmap(), addr, and length must both be a multiple of the underly-
       ing huge page size.

BUGS
       On Linux, there are no guarantees  like  those  suggested  above  under
       MAP_NORESERVE.   By  default,  any  process can be killed at any moment
       when the system runs out of memory.

       Before Linux 2.6.7, the MAP_POPULATE flag has effect only  if  prot  is
       specified as PROT_NONE.

       SUSv3  specifies  that mmap() should fail if length is 0.  However, be-
       fore Linux 2.6.12, mmap() succeeded in this case: no mapping  was  cre-
       ated and the call returned addr.  Since Linux 2.6.12, mmap() fails with
       the error EINVAL for this case.

       POSIX specifies that the system shall always zero fill any partial page
       at the end of the object and that system will never write any modifica-
       tion  of  the  object beyond its end.  On Linux, when you write data to
       such partial page after the end of the object, the data  stays  in  the
       page  cache  even after the file is closed and unmapped and even though
       the data is never written to the file itself, subsequent  mappings  may
       see  the modified content.  In some cases, this could be fixed by call-
       ing msync(2) before the unmap takes place; however, this  doesn't  work
       on  tmpfs(5) (for example, when using the POSIX shared memory interface
       documented in shm_overview(7)).

EXAMPLES
       The following program prints part of the file specified  in  its  first
       command-line  argument  to  standard  output.  The range of bytes to be
       printed is specified via offset and length values  in  the  second  and
       third  command-line arguments.  The program creates a memory mapping of
       the required pages of the file and then uses write(2) to output the de-
       sired bytes.

   Program source
       #include <fcntl.h>
       #include <stdio.h>
       #include <stdlib.h>
       #include <sys/mman.h>
       #include <sys/stat.h>
       #include <unistd.h>

       #define handle_error(msg) \
           do { perror(msg); exit(EXIT_FAILURE); } while (0)

       int
       main(int argc, char *argv[])
       {
           int          fd;
           char         *addr;
           off_t        offset, pa_offset;
           size_t       length;
           ssize_t      s;
           struct stat  sb;

           if (argc < 3 || argc > 4) {
               fprintf(stderr, "%s file offset [length]\n", argv[0]);
               exit(EXIT_FAILURE);
           }

           fd = open(argv[1], O_RDONLY);
           if (fd == -1)
               handle_error("open");

           if (fstat(fd, &sb) == -1)           /* To obtain file size */
               handle_error("fstat");

           offset = atoi(argv[2]);
           pa_offset = offset & ~(sysconf(_SC_PAGE_SIZE) - 1);
               /* offset for mmap() must be page aligned */

           if (offset >= sb.st_size) {
               fprintf(stderr, "offset is past end of file\n");
               exit(EXIT_FAILURE);
           }

           if (argc == 4) {
               length = atoi(argv[3]);
               if (offset + length > sb.st_size)
                   length = sb.st_size - offset;
                       /* Can't display bytes past end of file */

           } else {    /* No length arg ==> display to end of file */
               length = sb.st_size - offset;
           }

           addr = mmap(NULL, length + offset - pa_offset, PROT_READ,
                       MAP_PRIVATE, fd, pa_offset);
           if (addr == MAP_FAILED)
               handle_error("mmap");

           s = write(STDOUT_FILENO, addr + offset - pa_offset, length);
           if (s != length) {
               if (s == -1)
                   handle_error("write");

               fprintf(stderr, "partial write");
               exit(EXIT_FAILURE);
           }

           munmap(addr, length + offset - pa_offset);
           close(fd);

           exit(EXIT_SUCCESS);
       }

SEE ALSO
       ftruncate(2), getpagesize(2),  memfd_create(2),  mincore(2),  mlock(2),
       mmap2(2),  mprotect(2), mremap(2), msync(2), remap_file_pages(2), setr-
       limit(2), shmat(2), userfaultfd(2), shm_open(3), shm_overview(7)

       The descriptions of the following  files  in  proc(5):  /proc/pid/maps,
       /proc/pid/map_files, and /proc/pid/smaps.

       B.O. Gallmeister, POSIX.4, O'Reilly, pp. 128–129 and 389–391.

Linux man-pages 6.7               2023-10-31                           mmap(2)

Generated by dwww version 1.16 on Tue Dec 16 06:21:58 CET 2025.