dwww Home | Manual pages | Find package

MD(4)                      Kernel Interfaces Manual                      MD(4)

NAME
       md - Multiple Device driver aka Linux Software RAID

SYNOPSIS
       /dev/mdn
       /dev/md/n
       /dev/md/name

DESCRIPTION
       The  md  driver  provides  virtual devices that are created from one or
       more independent underlying devices.  This array of devices often  con-
       tains  redundancy  and  the  devices  are  often disk drives, hence the
       acronym RAID which stands for a Redundant Array of Independent Disks.

       md supports RAID levels 1 (mirroring), 4 (striped array with parity de-
       vice),  5  (striped  array  with  distributed  parity  information),  6
       (striped  array  with  distributed dual redundancy information), and 10
       (striped and mirrored).  If some number  of  underlying  devices  fails
       while  using  one of these levels, the array will continue to function;
       this number is one for RAID levels 4 and 5, two for RAID level  6,  and
       all  but one (N-1) for RAID level 1, and dependent on configuration for
       level 10.

       md also supports a number of pseudo RAID (non-redundant) configurations
       including RAID0 (striped array), LINEAR (catenated array), MULTIPATH (a
       set of different interfaces to the same device), and  FAULTY  (a  layer
       over a single device into which errors can be injected).

   MD METADATA
       Each  device  in  an array may have some metadata stored in the device.
       This metadata is sometimes called a superblock.  The  metadata  records
       information  about  the  structure and state of the array.  This allows
       the array to be reliably re-assembled after a shutdown.

       From Linux kernel version 2.6.10, md provides support for two different
       formats of metadata, and other formats can be added.  Prior to this re-
       lease, only one format is supported.

       The common format — known as version 0.90 — has a superblock that is 4K
       long and is written into a 64K aligned block that starts at  least  64K
       and  less than 128K from the end of the device (i.e. to get the address
       of the superblock round the size of the device down to  a  multiple  of
       64K  and  then subtract 64K).  The available size of each device is the
       amount of space before the super block, so between 64K and 128K is lost
       when a device in incorporated into an MD array.  This superblock stores
       multi-byte fields in a processor-dependent  manner,  so  arrays  cannot
       easily be moved between computers with different processors.

       The new format — known as version 1 — has a superblock that is normally
       1K  long,  but can be longer.  It is normally stored between 8K and 12K
       from the end of the device, on a 4K boundary, though variations can  be
       stored at the start of the device (version 1.1) or 4K from the start of
       the  device  (version 1.2).  This metadata format stores multibyte data
       in a processor-independent format and supports up to hundreds of compo-
       nent devices (version 0.90 only supports 28).

       The metadata contains, among other things:

       LEVEL  The manner in which the devices  are  arranged  into  the  array
              (LINEAR, RAID0, RAID1, RAID4, RAID5, RAID10, MULTIPATH).

       UUID   a  128 bit Universally Unique Identifier that identifies the ar-
              ray that contains this device.

       When a version 0.90 array is being reshaped (e.g. adding extra  devices
       to  a  RAID5), the version number is temporarily set to 0.91.  This en-
       sures that if the reshape process is stopped in the middle (e.g.  by  a
       system  crash) and the machine boots into an older kernel that does not
       support reshaping, then the array will not be  assembled  (which  would
       cause  data  corruption) but will be left untouched until a kernel that
       can complete the reshape processes is used.

   ARRAYS WITHOUT METADATA
       While it is usually best to create arrays with superblocks so that they
       can be assembled reliably, there are some circumstances when  an  array
       without superblocks is preferred.  These include:

       LEGACY ARRAYS
              Early  versions of the md driver only supported LINEAR and RAID0
              configurations and did not use a superblock (which is less crit-
              ical with these configurations).  While such  arrays  should  be
              rebuilt  with  superblocks  if possible, md continues to support
              them.

       FAULTY Being a largely transparent layer over a different  device,  the
              FAULTY  personality  doesn't  gain  anything  from  having a su-
              perblock.

       MULTIPATH
              It is often possible to detect devices which are different paths
              to the same storage directly rather than  having  a  distinctive
              superblock  written to the device and searched for on all paths.
              In this case, a MULTIPATH array with no superblock makes sense.

       RAID1  In some configurations it might be desired  to  create  a  RAID1
              configuration  that  does  not use a superblock, and to maintain
              the state of the array elsewhere.  While not encouraged for gen-
              eral use, it does have special-purpose uses and is supported.

   ARRAYS WITH EXTERNAL METADATA
       From release 2.6.28, the md driver supports arrays with externally man-
       aged metadata.  That is, the metadata is not managed by the kernel  but
       rather  by  a user-space program which is external to the kernel.  This
       allows support for a variety of metadata formats without cluttering the
       kernel with lots of details.

       md is able to communicate with the user-space program  through  various
       sysfs  attributes  so that it can make appropriate changes to the meta-
       data - for example to mark a device as faulty.  When necessary, md will
       wait for the program to acknowledge the event by writing to a sysfs at-
       tribute.  The manual page for mdmon(8) contains more detail about  this
       interaction.

   CONTAINERS
       Many metadata formats use a single block of metadata to describe a num-
       ber of different arrays which all use the same set of devices.  In this
       case it is helpful for the kernel to know about the full set of devices
       as a whole.  This set is known to md as a container.  A container is an
       md  array  with  externally managed metadata and with device offset and
       size so that it just covers the metadata part of the devices.  The  re-
       mainder of each device is available to be incorporated into various ar-
       rays.

   LINEAR
       A  LINEAR  array  simply catenates the available space on each drive to
       form one large virtual drive.

       One advantage of this arrangement over the more common  RAID0  arrange-
       ment  is that the array may be reconfigured at a later time with an ex-
       tra drive, so the array is made bigger without disturbing the data that
       is on the array.  This can even be done on a live array.

       If a chunksize is given with a LINEAR array, the usable space  on  each
       device is rounded down to a multiple of this chunksize.

   RAID0
       A  RAID0  array  (which has zero redundancy) is also known as a striped
       array.  A RAID0 array is configured at creation with a Chunk Size which
       must be a power of  two  (prior  to  Linux  2.6.31),  and  at  least  4
       kibibytes.

       The  RAID0 driver assigns the first chunk of the array to the first de-
       vice, the second chunk to the second device, and so on until all drives
       have been assigned one  chunk.   This  collection  of  chunks  forms  a
       stripe.   Further chunks are gathered into stripes in the same way, and
       are assigned to the remaining space in the drives.

       If devices in the array are not all the same size, then once the small-
       est device has been  exhausted,  the  RAID0  driver  starts  collecting
       chunks  into smaller stripes that only span the drives which still have
       remaining space.

       A bug was introduced in linux 3.14 which changed the layout  of  blocks
       in  a  RAID0  beyond the region that is striped over all devices.  This
       bug does not affect an array with all devices the same  size,  but  can
       affect other RAID0 arrays.

       Linux  5.4 (and some stable kernels to which the change was backported)
       will not normally assemble such an array as it cannot know which layout
       to use.  There is a module parameter "raid0.default_layout"  which  can
       be  set to "1" to force the kernel to use the pre-3.14 layout or to "2"
       to force it to use the 3.14-and-later  layout.   when  creating  a  new
       RAID0  array,  mdadm will record the chosen layout in the metadata in a
       way that allows newer kernels to assemble the array without  needing  a
       module parameter.

       To assemble an old array on a new kernel without using the module para-
       meter,  use  either  the  --update=layout-original  option or the --up-
       date=layout-alternate option.

       Once you have updated the layout you will not be able to mount the  ar-
       ray  on an older kernel.  If you need to revert to an older kernel, the
       layout information can be erased with the  --update=layout-unspecificed
       option.   If  you  use  this option to --assemble while running a newer
       kernel, the array will NOT assemble, but the metadata will be update so
       that it can be assembled on an older kernel.

       No that setting the layout to "unspecified" removes protections against
       this bug, and you must be sure that the kernel you use matches the lay-
       out of the array.

   RAID1
       A RAID1 array is also known as a mirrored set (though mirrors  tend  to
       provide reflected images, which RAID1 does not) or a plex.

       Once  initialised,  each  device  in a RAID1 array contains exactly the
       same data.  Changes are written to all devices in  parallel.   Data  is
       read  from  any one device.  The driver attempts to distribute read re-
       quests across all devices to maximise performance.

       All devices in a RAID1 array should be the same size.  If they are not,
       then only the amount of space available on the smallest device is  used
       (any extra space on other devices is wasted).

       Note that the read balancing done by the driver does not make the RAID1
       performance  profile  be  the same as for RAID0; a single stream of se-
       quential input will not be accelerated (e.g. a single dd), but multiple
       sequential streams or a random workload will use more than one spindle.
       In theory, having an N-disk RAID1 will allow N  sequential  threads  to
       read from all disks.

       Individual  devices  in a RAID1 can be marked as "write-mostly".  These
       drives are excluded from the normal read balancing  and  will  only  be
       read  from  when  there is no other option.  This can be useful for de-
       vices connected over a slow link.

   RAID4
       A RAID4 array is like a RAID0 array with an extra  device  for  storing
       parity. This device is the last of the active devices in the array. Un-
       like  RAID0,  RAID4  also requires that all stripes span all drives, so
       extra space on devices that are larger than the smallest is wasted.

       When any block in a RAID4 array is modified, the parity block for  that
       stripe  (i.e.  the block in the parity device at the same device offset
       as the stripe) is also modified so that the parity  block  always  con-
       tains  the  "parity" for the whole stripe.  I.e. its content is equiva-
       lent to the result of performing an exclusive-or operation between  all
       the data blocks in the stripe.

       This allows the array to continue to function if one device fails.  The
       data  that was on that device can be calculated as needed from the par-
       ity block and the other data blocks.

   RAID5
       RAID5 is very similar to RAID4.  The  difference  is  that  the  parity
       blocks  for  each stripe, instead of being on a single device, are dis-
       tributed across all devices.  This allows more parallelism  when  writ-
       ing,  as  two different block updates will quite possibly affect parity
       blocks on different devices so there is less contention.

       This also allows more parallelism when reading, as  read  requests  are
       distributed over all the devices in the array instead of all but one.

   RAID6
       RAID6  is  similar to RAID5, but can handle the loss of any two devices
       without data loss.  Accordingly, it requires N+2 drives to store N dri-
       ves worth of data.

       The performance for RAID6 is slightly lower but comparable to RAID5  in
       normal mode and single disk failure mode.  It is very slow in dual disk
       failure mode, however.

   RAID10
       RAID10  provides  a  combination  of  RAID1 and RAID0, and is sometimes
       known as RAID1+0.  Every datablock is duplicated some number of  times,
       and  the resulting collection of datablocks are distributed over multi-
       ple drives.

       When configuring a RAID10 array, it is necessary to specify the  number
       of  replicas  of  each  data block that are required (this will usually
       be 2) and whether their layout should  be  "near",  "far"  or  "offset"
       (with "offset" being available since Linux 2.6.18).

       About the RAID10 Layout Examples:
       The  examples  below visualise the chunk distribution on the underlying
       devices for the respective layout.

       For simplicity it is assumed that the size of  the  chunks  equals  the
       size  of  the  blocks of the underlying devices as well as those of the
       RAID10 device exported by the kernel (for example /dev/md/name).
       Therefore the chunks / chunk numbers map directly to the  blocks /block
       addresses of the exported RAID10 device.

       Decimal  numbers (0, 1, 2, ...) are the chunks of the RAID10 and due to
       the above assumption also the blocks and block  addresses  of  the  ex-
       ported RAID10 device.
       Repeated numbers mean copies of a chunk / block (obviously on different
       underlying devices).
       Hexadecimal  numbers (0x00, 0x01, 0x02, ...) are the block addresses of
       the underlying devices.

        "near" Layout
              When "near" replicas are chosen, the multiple copies of a  given
              chunk  are  laid  out  consecutively ("as close to each other as
              possible") across the stripes of the array.

              With an even number of devices, they will  likely  (unless  some
              misalignment is present) lay at the very same offset on the dif-
              ferent devices.
              This is as the "classic" RAID1+0; that is two groups of mirrored
              devices  (in the example below the groups Device #1 / #2 and De-
              vice #3 / #4 are each a RAID1) both in turn  forming  a  striped
              RAID0.

              Example  with  2 copies  per chunk and an even number (4) of de-
              vices:
                     ┌───────────┌───────────┌───────────┌───────────┐
                     │ Device #1 │ Device #2 │ Device #3 │ Device #4 │
              ┌──────├───────────├───────────├───────────├───────────┤
              │ 0x00 │     0     │     0     │     1     │     1     │
              │ 0x01 │     2     │     2     │     3     │     3     │
              │      │    ...    │    ...    │    ...    │    ...    │
              │  :   │     :     │     :     │     :     │     :     │
              │      │    ...    │    ...    │    ...    │    ...    │
              │ 0x80 │    254    │    254    │    255    │    255    │
              └──────└───────────└───────────└───────────└───────────┘
                       \---------v---------/   \---------v---------/
                               RAID1                   RAID1
                       \---------------------v---------------------/
                                           RAID0

              Example with 2 copies per chunk and an  odd  number (5)  of  de-
              vices:
                     ┌────────┌────────┌────────┌────────┌────────┐
                     │ Dev #1 │ Dev #2 │ Dev #3 │ Dev #4 │ Dev #5 │
              ┌──────├────────├────────├────────├────────├────────┤
              │ 0x00 │   0    │   0    │   1    │   1    │   2    │
              │ 0x01 │   2    │   3    │   3    │   4    │   4    │
              │      │  ...   │  ...   │  ...   │  ...   │  ...   │
              │  :   │   :    │   :    │   :    │   :    │   :    │
              │      │  ...   │  ...   │  ...   │  ...   │  ...   │
              │ 0x80 │  317   │  318   │  318   │  319   │  319   │
              └──────└────────└────────└────────└────────└────────┘

        "far" Layout
              When  "far"  replicas are chosen, the multiple copies of a given
              chunk are laid out quite distant ("as far as  reasonably  possi-
              ble") from each other.

              First  a  complete  sequence of all data blocks (that is all the
              data one sees on the exported RAID10 block  device)  is  striped
              over  the  devices. Then another (though "shifted") complete se-
              quence of all data blocks; and so on (in the case of  more  than
              2 copies per chunk).

              The  "shift" needed to prevent placing copies of the same chunks
              on the same devices is actually a cyclic permutation  with  off-
              set 1  of  each  of  the  stripes  within a complete sequence of
              chunks.
              The offset 1 is relative to the previous  complete  sequence  of
              chunks,  so in case of more than 2 copies per chunk one gets the
              following offsets:
              1. complete sequence of chunks: offset =  0
              2. complete sequence of chunks: offset =  1
              3. complete sequence of chunks: offset =  2
                                     :
              n. complete sequence of chunks: offset = n-1

              Example with 2 copies per chunk and an even  number (4)  of  de-
              vices:
                     ┌───────────┌───────────┌───────────┌───────────┐
                     │ Device #1 │ Device #2 │ Device #3 │ Device #4 │
              ┌──────├───────────├───────────├───────────├───────────┤
              │ 0x00 │     0     │     1     │     2     │     3     │ \
              │ 0x01 │     4     │     5     │     6     │     7     │ > [#]
              │      │    ...    │    ...    │    ...    │    ...    │ ...
              │  :   │     :     │     :     │     :     │     :     │ :
              │      │    ...    │    ...    │    ...    │    ...    │ ...
              │ 0x40 │    252    │    253    │    254    │    255    │ /
              │ 0x41 │     3     │     0     │     1     │     2     │ \
              │ 0x42 │     7     │     4     │     5     │     6     │ > [#]~
              │      │    ...    │    ...    │    ...    │    ...    │ ...
              │  :   │     :     │     :     │     :     │     :     │ :
              │      │    ...    │    ...    │    ...    │    ...    │ ...
              │ 0x80 │    255    │    252    │    253    │    254    │ /
              └──────└───────────└───────────└───────────└───────────┘

              Example  with  2 copies  per  chunk and an odd number (5) of de-
              vices:
                     ┌────────┌────────┌────────┌────────┌────────┐
                     │ Dev #1 │ Dev #2 │ Dev #3 │ Dev #4 │ Dev #5 │
              ┌──────├────────├────────├────────├────────├────────┤
              │ 0x00 │   0    │   1    │   2    │   3    │   4    │ \
              │ 0x01 │   5    │   6    │   7    │   8    │   9    │ > [#]
              │      │  ...   │  ...   │  ...   │  ...   │  ...   │ ...
              │  :   │   :    │   :    │   :    │   :    │   :    │ :
              │      │  ...   │  ...   │  ...   │  ...   │  ...   │ ...
              │ 0x40 │  315   │  316   │  317   │  318   │  319   │ /
              │ 0x41 │   4    │   0    │   1    │   2    │   3    │ \
              │ 0x42 │   9    │   5    │   6    │   7    │   8    │ > [#]~
              │      │  ...   │  ...   │  ...   │  ...   │  ...   │ ...
              │  :   │   :    │   :    │   :    │   :    │   :    │ :
              │      │  ...   │  ...   │  ...   │  ...   │  ...   │ ...
              │ 0x80 │  319   │  315   │  316   │  317   │  318   │ /
              └──────└────────└────────└────────└────────└────────┘

              With [#] being the complete  sequence  of  chunks  and  [#]~ the
              cyclic  permutation  with  offset 1 thereof (in the case of more
              than    2    copies     per     chunk     there     would     be
              ([#]~)~, (([#]~)~)~, ...).

              The  advantage  of  this layout is that MD can easily spread se-
              quential reads over the devices, making them similar to RAID0 in
              terms of speed.
              The cost is more seeking for writes, making  them  substantially
              slower.

       "offset" Layout
              When  "offset"  replicas  are  chosen, all the copies of a given
              chunk are striped consecutively ("offset by  the  stripe  length
              after each other") over the devices.

              Explained  in detail, <number of devices> consecutive chunks are
              striped over the devices, immediately followed  by  a  "shifted"
              copy  of  these  chunks (and by further such "shifted" copies in
              the case of more than 2 copies per chunk).
              This pattern repeats for all further consecutive chunks  of  the
              exported  RAID10  device  (in  other  words:  all  further  data
              blocks).

              The "shift" needed to prevent placing copies of the same  chunks
              on  the  same devices is actually a cyclic permutation with off-
              set 1 of each of the striped copies of <number of devices>  con-
              secutive chunks.
              The offset 1 is relative to the previous striped copy of <number
              of devices> consecutive chunks, so in case of more than 2 copies
              per chunk one gets the following offsets:
              1. <number of devices> consecutive chunks: offset =  0
              2. <number of devices> consecutive chunks: offset =  1
              3. <number of devices> consecutive chunks: offset =  2
                                           :
              n. <number of devices> consecutive chunks: offset = n-1

              Example  with  2 copies  per chunk and an even number (4) of de-
              vices:
                     ┌───────────┌───────────┌───────────┌───────────┐
                     │ Device #1 │ Device #2 │ Device #3 │ Device #4 │
              ┌──────├───────────├───────────├───────────├───────────┤
              │ 0x00 │     0     │     1     │     2     │     3     │ ) AA
              │ 0x01 │     3     │     0     │     1     │     2     │ ) AA~
              │ 0x02 │     4     │     5     │     6     │     7     │ ) AB
              │ 0x03 │     7     │     4     │     5     │     6     │ ) AB~
              │      │    ...    │    ...    │    ...    │    ...    │ ...
              │  :   │     :     │     :     │     :     │     :     │   :
              │      │    ...    │    ...    │    ...    │    ...    │ ...
              │ 0x79 │    251    │    252    │    253    │    254    │ ) EX
              │ 0x80 │    254    │    251    │    252    │    253    │ ) EX~
              └──────└───────────└───────────└───────────└───────────┘

              Example with 2 copies per chunk and an  odd  number (5)  of  de-
              vices:
                     ┌────────┌────────┌────────┌────────┌────────┐
                     │ Dev #1 │ Dev #2 │ Dev #3 │ Dev #4 │ Dev #5 │
              ┌──────├────────├────────├────────├────────├────────┤
              │ 0x00 │   0    │   1    │   2    │   3    │   4    │ ) AA
              │ 0x01 │   4    │   0    │   1    │   2    │   3    │ ) AA~
              │ 0x02 │   5    │   6    │   7    │   8    │   9    │ ) AB
              │ 0x03 │   9    │   5    │   6    │   7    │   8    │ ) AB~
              │      │  ...   │  ...   │  ...   │  ...   │  ...   │ ...
              │  :   │   :    │   :    │   :    │   :    │   :    │   :
              │      │  ...   │  ...   │  ...   │  ...   │  ...   │ ...
              │ 0x79 │  314   │  315   │  316   │  317   │  318   │ ) EX
              │ 0x80 │  318   │  314   │  315   │  316   │  317   │ ) EX~
              └──────└────────└────────└────────└────────└────────┘

              With  AA, AB, ...,  AZ, BA, ... being the sets of <number of de-
              vices> consecutive chunks and AA~, AB~, ...,  AZ~, BA~, ...  the
              cyclic  permutations  with offset 1 thereof (in the case of more
              than 2 copies per chunk there would be (AA~)~, ...  as  well  as
              ((AA~)~)~, ... and so on).

              This  should  give  similar  read  characteristics to "far" if a
              suitably large chunk size is used, but without as  much  seeking
              for writes.

       It  should  be  noted that the number of devices in a RAID10 array need
       not be a multiple of the number of replica of each data block; however,
       there must be at least as many devices as replicas.

       If, for example, an array is created with 5  devices  and  2  replicas,
       then  space  equivalent  to  2.5  of the devices will be available, and
       every block will be stored on two different devices.

       Finally, it is possible to have an array with  both  "near"  and  "far"
       copies.  If an array is configured with 2 near copies and 2 far copies,
       then there will be a total of 4 copies of each block, each on a differ-
       ent  drive.   This is an artifact of the implementation and is unlikely
       to be of real value.

   MULTIPATH
       MULTIPATH is not really a RAID at all as there is only one real  device
       in  a  MULTIPATH  md  array.   However there are multiple access points
       (paths) to this device, and one of these paths might fail, so there are
       some similarities.

       A MULTIPATH array is composed of a number of  logically  different  de-
       vices, often fibre channel interfaces, that all refer the the same real
       device.  If one of these interfaces fails (e.g. due to cable problems),
       the MULTIPATH driver will attempt to redirect requests to  another  in-
       terface.

       The MULTIPATH drive is not receiving any ongoing development and should
       be  considered a legacy driver.  The device-mapper based multipath dri-
       vers should be preferred for new installations.

   FAULTY
       The FAULTY md module is provided for testing purposes.  A FAULTY  array
       has  exactly  one  component device and is normally assembled without a
       superblock, so the md array created provides direct access  to  all  of
       the data in the component device.

       The  FAULTY module may be requested to simulate faults to allow testing
       of other md levels or of filesystems.  Faults can be chosen to  trigger
       on  read requests or write requests, and can be transient (a subsequent
       read/write at the address will probably succeed) or persistent  (subse-
       quent  read/write of the same address will fail).  Further, read faults
       can be "fixable" meaning that they persist until a write request at the
       same address.

       Fault types can be requested with a period.  In this  case,  the  fault
       will  recur  repeatedly after the given number of requests of the rele-
       vant type.  For example if persistent read faults have a period of 100,
       then every 100th read request would generate a fault,  and  the  faulty
       sector  would be recorded so that subsequent reads on that sector would
       also fail.

       There is a limit to the number of faulty sectors that  are  remembered.
       Faults  generated  after  this  limit is exhausted are treated as tran-
       sient.

       The list of faulty sectors can be flushed, and the active list of fail-
       ure modes can be cleared.

   UNCLEAN SHUTDOWN
       When changes are made to a RAID1, RAID4, RAID5, RAID6, or RAID10  array
       there  is  a  possibility of inconsistency for short periods of time as
       each update requires at least two block to be written to different  de-
       vices, and these writes probably won't happen at exactly the same time.
       Thus  if a system with one of these arrays is shutdown in the middle of
       a write operation (e.g. due to power failure), the  array  may  not  be
       consistent.

       To  handle  this situation, the md driver marks an array as "dirty" be-
       fore writing any data to it, and marks it as "clean" when the array  is
       being  disabled,  e.g. at shutdown.  If the md driver finds an array to
       be dirty at startup, it proceeds to correct any possibly inconsistency.
       For RAID1, this involves copying the contents of the first  drive  onto
       all other drives.  For RAID4, RAID5 and RAID6 this involves recalculat-
       ing  the  parity  for each stripe and making sure that the parity block
       has the correct data.  For RAID10 it involves copying one of the repli-
       cas of each block onto all the others.  This process, known as  "resyn-
       chronising"  or "resync" is performed in the background.  The array can
       still be used, though possibly with reduced performance.

       If a RAID4, RAID5 or RAID6 array is  degraded  (missing  at  least  one
       drive,  two  for RAID6) when it is restarted after an unclean shutdown,
       it cannot recalculate parity, and so it is possible that data might  be
       undetectably  corrupted.  The 2.4 md driver does not alert the operator
       to this condition.  The 2.6 md driver will fail to start  an  array  in
       this  condition  without manual intervention, though this behaviour can
       be overridden by a kernel parameter.

   RECOVERY
       If the md driver detects a write error on a device in a  RAID1,  RAID4,
       RAID5,  RAID6,  or  RAID10  array,  it immediately disables that device
       (marking it as faulty) and continues operation  on  the  remaining  de-
       vices.   If there are spare drives, the driver will start recreating on
       one of the spare drives the data which was on that failed drive, either
       by copying a working drive in a RAID1 configuration, or by doing calcu-
       lations with the parity block on RAID4, RAID5 or RAID6, or  by  finding
       and copying originals for RAID10.

       In kernels prior to about 2.6.15, a read error would cause the same ef-
       fect  as  a  write  error.  In later kernels, a read-error will instead
       cause md to attempt a recovery by overwriting the bad  block.  i.e.  it
       will find the correct data from elsewhere, write it over the block that
       failed, and then try to read it back again.  If either the write or the
       re-read  fail,  md will treat the error the same way that a write error
       is treated, and will fail the whole device.

       While this recovery process is happening, the md  driver  will  monitor
       accesses  to the array and will slow down the rate of recovery if other
       activity is happening, so that normal access to the array will  not  be
       unduly  affected.   When  no  other activity is happening, the recovery
       process proceeds at full speed.  The actual speed targets for  the  two
       different  situations  can  be  controlled  by  the speed_limit_min and
       speed_limit_max control files mentioned below.

   SCRUBBING AND MISMATCHES
       As storage devices can develop bad blocks at any time it is valuable to
       regularly read all blocks on all devices in an array  so  as  to  catch
       such bad blocks early.  This process is called scrubbing.

       md arrays can be scrubbed by writing either check or repair to the file
       md/sync_action in the sysfs directory for the device.

       Requesting a scrub will cause md to read every block on every device in
       the  array,  and  check  that  the  data  is consistent.  For RAID1 and
       RAID10, this means checking that the copies are identical.  For  RAID4,
       RAID5,  RAID6  this  means checking that the parity block is (or blocks
       are) correct.

       If a read error is detected during this process, the normal  read-error
       handling  causes  correct data to be found from other devices and to be
       written back to the faulty device.  In many case this will  effectively
       fix the bad block.

       If  all  blocks  read  successfully but are found to not be consistent,
       then this is regarded as a mismatch.

       If check was used, then no action is taken to handle the  mismatch,  it
       is  simply  recorded.   If repair was used, then a mismatch will be re-
       paired in the same way that resync repairs arrays.  For RAID5/RAID6 new
       parity blocks are written.  For RAID1/RAID10, all  but  one  block  are
       overwritten with the content of that one block.

       A  count  of  mismatches is recorded in the sysfs file md/mismatch_cnt.
       This is set to zero when a scrub starts and is incremented  whenever  a
       sector  is  found  that is a mismatch.  md normally works in units much
       larger than a single sector and when it finds a mismatch, it  does  not
       determine exactly how many actual sectors were affected but simply adds
       the  number of sectors in the IO unit that was used.  So a value of 128
       could simply mean that a single  64KB  check  found  an  error  (128  x
       512bytes = 64KB).

       If  an  array is created by mdadm with --assume-clean then a subsequent
       check could be expected to find some mismatches.

       On a truly clean RAID5 or RAID6 array, any mismatches should indicate a
       hardware problem at some level - software  issues  should  never  cause
       such a mismatch.

       However on RAID1 and RAID10 it is possible for software issues to cause
       a  mismatch  to  be  reported.  This does not necessarily mean that the
       data on the array is corrupted.  It could simply  be  that  the  system
       does  not  care what is stored on that part of the array - it is unused
       space.

       The most likely cause for an unexpected mismatch on RAID1 or RAID10 oc-
       curs if a swap partition or swap file is stored on the array.

       When the swap subsystem wants to write a page of memory out,  it  flags
       the  page as 'clean' in the memory manager and requests the swap device
       to write it out.  It is quite possible that the memory will be  changed
       while  the  write-out is happening.  In that case the 'clean' flag will
       be found to be clear when the write completes and so the swap subsystem
       will simply forget that the swapout had been attempted, and will possi-
       bly choose a different page to write out.

       If the swap device was on RAID1 (or RAID10), then the data is sent from
       memory to a device twice (or more depending on the number of devices in
       the array).  Thus it is possible that the memory gets  changed  between
       the times it is sent, so different data can be written to the different
       devices  in  the  array.  This will be detected by check as a mismatch.
       However it does not reflect any corruption as the block where this mis-
       match occurs is being treated by the swap system as  being  empty,  and
       the data will never be read from that block.

       It  is  conceivable for a similar situation to occur on non-swap files,
       though it is less likely.

       Thus the mismatch_cnt value can not be  interpreted  very  reliably  on
       RAID1 or RAID10, especially when the device is used for swap.

   BITMAP WRITE-INTENT LOGGING
       From  Linux  2.6.13,  md  supports a bitmap based write-intent log.  If
       configured, the bitmap is used to record which blocks of the array  may
       be  out  of  sync.   Before any write request is honoured, md will make
       sure that the corresponding bit in the log is set.  After a  period  of
       time with no writes to an area of the array, the corresponding bit will
       be cleared.

       This bitmap is used for two optimisations.

       Firstly, after an unclean shutdown, the resync process will consult the
       bitmap  and  only  resync  those  blocks that correspond to bits in the
       bitmap that are set.  This can dramatically reduce resync time.

       Secondly, when a drive fails and is removed from the  array,  md  stops
       clearing bits in the intent log.  If that same drive is re-added to the
       array,  md  will notice and will only recover the sections of the drive
       that are covered by bits in the intent log that are set.  This can  al-
       low  a  device to be temporarily removed and reinserted without causing
       an enormous recovery cost.

       The intent log can be stored in a file on a separate device, or it  can
       be stored near the superblocks of an array which has superblocks.

       It  is  possible  to add an intent log to an active array, or remove an
       intent log if one is present.

       In 2.6.13, intent bitmaps are only supported with RAID1.  Other  levels
       with redundancy are supported from 2.6.15.

   BAD BLOCK LIST
       From  Linux  3.5  each device in an md array can store a list of known-
       bad-blocks.  This list is 4K in size and usually positioned at the  end
       of the space between the superblock and the data.

       When  a block cannot be read and cannot be repaired by writing data re-
       covered from other devices, the address of the block is stored  in  the
       bad  block  list.   Similarly if an attempt to write a block fails, the
       address will be recorded as a bad block.  If attempting to  record  the
       bad block fails, the whole device will be marked faulty.

       Attempting to read from a known bad block will cause a read error.  At-
       tempting to write to a known bad block will be ignored if any write er-
       rors have been reported by the device.  If there have been no write er-
       rors  then  the data will be written to the known bad block and if that
       succeeds, the address will be removed from the list.

       This allows an array to fail more gracefully - a few blocks on  differ-
       ent devices can be faulty without taking the whole array out of action.

       The  list  is particularly useful when recovering to a spare.  If a few
       blocks cannot be read from the other devices, the bulk of the  recovery
       can complete and those few bad blocks will be recorded in the bad block
       list.

   RAID WRITE HOLE
       Due  to  non-atomicity nature of RAID write operations, interruption of
       write operations (system crash, etc.) to RAID456 array can lead to  in-
       consistent parity and data loss (so called RAID-5 write hole).  To plug
       the write hole md supports two mechanisms described below.

       DIRTY STRIPE JOURNAL
              From  Linux  4.4,  md  supports write ahead journal for RAID456.
              When the array is created, an additional journal device  can  be
              added  to the array through write-journal option. The RAID write
              journal works similar to file system journals. Before writing to
              the data disks, md persists data AND parity of the stripe to the
              journal device. After crashes, md searches  the  journal  device
              for  incomplete  write  operations,  and replay them to the data
              disks.

              When the journal device fails, the RAID array is forced  to  run
              in read-only mode.

       PARTIAL PARITY LOG
              From  Linux  4.12 md supports Partial Parity Log (PPL) for RAID5
              arrays only.  Partial parity for a write operation is the XOR of
              stripe data chunks not modified by the write. PPL is  stored  in
              the metadata region of RAID member drives, no additional journal
              drive is needed.  After crashes, if one of the not modified data
              disks  of the stripe is missing, this updated parity can be used
              to recover its data.

              This mechanism is documented more fully in the  file  Documenta-
              tion/md/raid5-ppl.rst

   WRITE-BEHIND
       From Linux 2.6.14, md supports WRITE-BEHIND on RAID1 arrays.

       This allows certain devices in the array to be flagged as write-mostly.
       MD will only read from such devices if there is no other option.

       If  a  write-intent  bitmap  is also provided, write requests to write-
       mostly devices will be treated as write-behind requests and md will not
       wait for writes to those requests  to  complete  before  reporting  the
       write as complete to the filesystem.

       This  allows  for  a  RAID1 with WRITE-BEHIND to be used to mirror data
       over a slow link to a remote computer (providing  the  link  isn't  too
       slow).   The extra latency of the remote link will not slow down normal
       operations, but the remote system will still have a  reasonably  up-to-
       date copy of all data.

   FAILFAST
       From  Linux  4.10,  md  supports  FAILFAST for RAID1 and RAID10 arrays.
       This is a flag that can be set on individual drives, though it is  usu-
       ally set on all drives, or no drives.

       When md sends an I/O request to a drive that is marked as FAILFAST, and
       when  the  array  could  survive  the loss of that drive without losing
       data, md will request that the underlying device does not  perform  any
       retries.   This  means  that a failure will be reported to md promptly,
       and it can mark the device as faulty and continue using the  other  de-
       vice(s).  md cannot control the timeout that the underlying devices use
       to  determine failure.  Any changes desired to that timeout must be set
       explicitly on the underlying device, separately from using mdadm.

       If a FAILFAST request does fail, and if it is still safe  to  mark  the
       device  as  faulty  without  data loss, that will be done and the array
       will continue functioning on a reduced number of devices.  If it is not
       possible to safely mark the device as faulty, md will retry the request
       without disabling retries in the underlying device.  In  any  case,  md
       will  not  attempt to repair read errors on a device marked as FAILFAST
       by writing out the correct.  It will just mark the device as faulty.

       FAILFAST is appropriate for storage arrays that have a low  probability
       of  true  failure,  but will sometimes introduce unacceptable delays to
       I/O requests while performing internal maintenance.  The value of  set-
       ting FAILFAST involves a trade-off.  The gain is that the chance of un-
       acceptable  delays  is substantially reduced.  The cost is that the un-
       likely event of data-loss on one device is slightly more likely to  re-
       sult in data-loss for the array.

       When  a  device in an array using FAILFAST is marked as faulty, it will
       usually become usable again in a short while.  mdadm makes  no  attempt
       to detect that possibility.  Some separate mechanism, tuned to the spe-
       cific  details  of  the  expected failure modes, needs to be created to
       monitor devices to see when they return to full functionality,  and  to
       then re-add them to the array.  In order of this "re-add" functionality
       to be effective, an array using FAILFAST should always have a write-in-
       tent bitmap.

   RESTRIPING
       Restriping,  also  known as Reshaping, is the processes of re-arranging
       the data stored in each stripe into a new layout.  This  might  involve
       changing the number of devices in the array (so the stripes are wider),
       changing the chunk size (so stripes are deeper or shallower), or chang-
       ing  the  arrangement  of  data  and parity (possibly changing the RAID
       level, e.g. 1 to 5 or 5 to 6).

       As of Linux 2.6.35, md can reshape a RAID4, RAID5, or  RAID6  array  to
       have  a  different number of devices (more or fewer) and to have a dif-
       ferent layout or chunk size.  It can also convert between these differ-
       ent RAID levels.  It can also convert between RAID0 and RAID10, and be-
       tween RAID0 and RAID4 or RAID5.  Other possibilities may follow in  fu-
       ture kernels.

       During  any  stripe  process there is a 'critical section' during which
       live data is being overwritten on disk.  For the operation of  increas-
       ing  the  number of drives in a RAID5, this critical section covers the
       first few stripes (the number being the product of the old and new num-
       ber of devices).  After this critical section is passed, data  is  only
       written to areas of the array which no longer hold live data — the live
       data has already been located away.

       For  a  reshape which reduces the number of devices, the 'critical sec-
       tion' is at the end of the reshape process.

       md is not able to ensure data preservation if there is  a  crash  (e.g.
       power failure) during the critical section.  If md is asked to start an
       array  which  failed  during  a critical section of restriping, it will
       fail to start the array.

       To deal with this possibility, a user-space program must

       •   Disable writes to that section of the array (using the sysfs inter-
           face),

       •   take a copy of the data somewhere (i.e. make a backup),

       •   allow the process to continue and invalidate the backup and restore
           write access once the critical section is passed, and

       •   provide for restoring the critical data before restarting the array
           after a system crash.

       mdadm versions from 2.4 do this for growing a RAID5 array.

       For operations that do not change the size of the  array,  like  simply
       increasing  chunk size, or converting RAID5 to RAID6 with one extra de-
       vice, the entire process is the critical section.  In  this  case,  the
       restripe  will  need  to progress in stages, as a section is suspended,
       backed up, restriped, and released.

   SYSFS INTERFACE
       Each block device appears as a directory in  sysfs  (which  is  usually
       mounted at /sys).  For MD devices, this directory will contain a subdi-
       rectory  called md which contains various files for providing access to
       information about the array.

       This interface is documented more fully in the  file  Documentation/ad-
       min-guide/md.rst  which  is  distributed with the kernel sources.  That
       file should be consulted for full  documentation.   The  following  are
       just a selection of attribute files that are available.

       md/sync_speed_min
              This  value,  if  set,  overrides  the  system-wide  setting  in
              /proc/sys/dev/raid/speed_limit_min for this array only.  Writing
              the value system to this file will cause the system-wide setting
              to have effect.

       md/sync_speed_max
              This  is  the  partner  of   md/sync_speed_min   and   overrides
              /proc/sys/dev/raid/speed_limit_max described below.

       md/sync_action
              This  can  be  used  to  monitor and control the resync/recovery
              process of MD.  In particular, writing "check" here  will  cause
              the array to read all data block and check that they are consis-
              tent  (e.g.  parity  is  correct, or all mirror replicas are the
              same).  Any discrepancies found are NOT corrected.

              A count of problems found will be stored in md/mismatch_count.

              Alternately, "repair" can be written which will cause  the  same
              check to be performed, but any errors will be corrected.

              Finally, "idle" can be written to stop the check/repair process.

       md/stripe_cache_size
              This  is only available on RAID5 and RAID6.  It records the size
              (in pages per device) of the  stripe cache  which  is  used  for
              synchronising all write operations to the array and all read op-
              erations  if  the array is degraded.  The default is 256.  Valid
              values are 17 to 32768.  Increasing  this  number  can  increase
              performance  in  some situations, at some cost in system memory.
              Note, setting this value too high can result in an "out of  mem-
              ory" condition for the system.

              memory_consumed     =     system_page_size    *    nr_disks    *
              stripe_cache_size

       md/preread_bypass_threshold
              This is only available on RAID5 and RAID6.  This  variable  sets
              the  number  of times MD will service a full-stripe-write before
              servicing a stripe that requires some "prereading".   For  fair-
              ness   this   defaults   to   1.    Valid   values   are   0  to
              stripe_cache_size.  Setting this to 0 maximizes sequential-write
              throughput at the cost of fairness to  threads  doing  small  or
              random writes.

       md/bitmap/backlog
              The  value  stored in the file only has any effect on RAID1 when
              write-mostly devices are active, and write requests to those de-
              vices are proceed in the background.

              This variable sets a limit on the  number  of  concurrent  back-
              ground  writes,  the  valid  values are 0 to 16383, 0 means that
              write-behind is not allowed, while any other number means it can
              happen.  If there are more write requests than the  number,  new
              writes will by synchronous.

       md/bitmap/can_clear
              This  is for externally managed bitmaps, where the kernel writes
              the bitmap itself, but metadata describing the bitmap is managed
              by mdmon or similar.

              When the array is degraded, bits mustn't be  cleared.  When  the
              array  becomes  optimal again, bit can be cleared, but first the
              metadata needs to record the current event  count.  So  md  sets
              this to 'false' and notifies mdmon, then mdmon updates the meta-
              data and writes 'true'.

              There  is  no  code  in  mdmon  to actually do this, so maybe it
              doesn't even work.

       md/bitmap/chunksize
              The bitmap chunksize can only be changed when no bitmap  is  ac-
              tive, and the value should be power of 2 and at least 512.

       md/bitmap/location
              This  indicates  where  the write-intent bitmap for the array is
              stored.  It can be "none" or "file" or a signed offset from  the
              array  metadata  - measured in sectors. You cannot set a file by
              writing here - that can only be done  with  the  SET_BITMAP_FILE
              ioctl.

              Write  'none'  to  'bitmap/location'  will clear bitmap, and the
              previous location value must be write to it to restore bitmap.

       md/bitmap/max_backlog_used
              This keeps track of the maximum number of  concurrent  write-be-
              hind  requests  for  an md array, writing any value to this file
              will clear it.

       md/bitmap/metadata
              This can be 'internal' or 'clustered' or 'external'.  'internal'
              is set by default, which means the metadata for bitmap is stored
              in  the  first  256 bytes of the bitmap space. 'clustered' means
              separate bitmap metadata are used for each cluster node. 'exter-
              nal' means that bitmap metadata is  managed  externally  to  the
              kernel.

       md/bitmap/space
              This  shows  the  space  (in  sectors)  which  is  available  at
              md/bitmap/location, and allows the kernel to  know  when  it  is
              safe  to  resize  the bitmap to match a resized array. It should
              big enough to contain the total bytes in the bitmap.

              For 1.0 metadata, assume we can use up to the superblock if  be-
              fore, else to 4K beyond superblock. For other metadata versions,
              assume no change is possible.

       md/bitmap/time_base
              This  shows  the  time (in seconds) between disk flushes, and is
              used to looking for bits in the bitmap to be cleared.

              The default value is 5 seconds, and it  should  be  an  unsigned
              long value.

   KERNEL PARAMETERS
       The md driver recognised several different kernel parameters.

       raid=noautodetect
              This will disable the normal detection of md arrays that happens
              at  boot time.  If a drive is partitioned with MS-DOS style par-
              titions, then if any of the 4 main partitions  has  a  partition
              type  of 0xFD, then that partition will normally be inspected to
              see if it is part of an MD array, and if  any  full  arrays  are
              found,  they  are  started.  This kernel parameter disables this
              behaviour.

       raid=partitionable

       raid=part
              These are available in 2.6 and later kernels only.   They  indi-
              cate that autodetected MD arrays should be created as partition-
              able  arrays, with a different major device number to the origi-
              nal non-partitionable md arrays.  The device number is listed as
              mdp in /proc/devices.

       md_mod.start_ro=1

       /sys/module/md_mod/parameters/start_ro
              This tells md to start all arrays in read-only mode.  This is  a
              soft  read-only  that will automatically switch to read-write on
              the first write request.   However  until  that  write  request,
              nothing  is  written  to any device by md, and in particular, no
              resync or recovery operation is started.

       md_mod.start_dirty_degraded=1

       /sys/module/md_mod/parameters/start_dirty_degraded
              As mentioned above, md will not normally start a  RAID4,  RAID5,
              or  RAID6  that is both dirty and degraded as this situation can
              imply hidden data  loss.   This  can  be  awkward  if  the  root
              filesystem is affected.  Using this module parameter allows such
              arrays to be started at boot time.  It should be understood that
              there  is  a real (though small) risk of data corruption in this
              situation.

       md=n,dev,dev,...

       md=dn,dev,dev,...
              This tells the md driver to assemble /dev/md n from  the  listed
              devices.   It  is only necessary to start the device holding the
              root filesystem this way.  Other arrays are  best  started  once
              the system is booted.

              In  2.6  kernels, the d immediately after the = indicates that a
              partitionable device (e.g.  /dev/md/d0) should be created rather
              than the original non-partitionable device.

       md=n,l,c,i,dev...
              This tells the md driver to assemble a legacy  RAID0  or  LINEAR
              array  without  a  superblock.   n gives the md device number, l
              gives the level, 0 for RAID0 or -1 for LINEAR, c gives the chunk
              size as a base-2 logarithm offset by twelve, so 0  means  4K,  1
              means 8K.  i is ignored (legacy support).

FILES
       /proc/mdstat
              Contains  information  about the status of currently running ar-
              ray.

       /proc/sys/dev/raid/speed_limit_min
              A readable and writable file that reflects  the  current  "goal"
              rebuild  speed for times when non-rebuild activity is current on
              an array.  The speed is in Kibibytes per second, and is  a  per-
              device  rate,  not  a  per-array rate (which means that an array
              with more disks will shuffle more data for a given speed).   The
              default is 1000.

       /proc/sys/dev/raid/speed_limit_max
              A readable and writable file that reflects  the  current  "goal"
              rebuild  speed for times when no non-rebuild activity is current
              on an array.  The default is 200,000.

SEE ALSO
       mdadm(8),

                                                                         MD(4)

Generated by dwww version 1.16 on Tue Dec 16 15:23:30 CET 2025.