dwww Home | Manual pages | Find package

BPFTRACE(8)                                                        BPFTRACE(8)

NAME
       bpftrace - a high-level tracing language

SYNOPSIS
       bpftrace [OPTIONS] FILENAME
       bpftrace [OPTIONS] -e 'program code'

DESCRIPTION
       bpftrace is a high-level tracing language and runtime for Linux based
       on BPF. It supports static and dynamic tracing for both the kernel and
       user-space.

       When FILENAME is "-", read from stdin.

EXAMPLES
       List all probes with "sleep" in their name

             # bpftrace -l '*sleep*'

       Trace processes calling sleep

             # bpftrace -e 'kprobe:do_nanosleep { printf("%d sleeping\n", pid); }'

       Trace processes calling sleep while spawning sleep 5 as a child process

             # bpftrace -e 'kprobe:do_nanosleep { printf("%d sleeping\n", pid); }' -c 'sleep 5'

SUPPORTED ARCHITECTURES
       x86_64, arm64 and s390x

OPTIONS
   Output format
       -B MODE, Set the buffer mode for stdout. Valid values are
           none No buffering. Each I/O is written as soon as possible
           line Data is written on the first newline or when the buffer is
           full. This is the default mode.
           full Data is written once the buffer is full.

       -f FORMAT, Set the output format. Valid values are
           json
           text

       -o FILENAME
           Write bpftrace tracing output to FILENAME instead of stdout. This
           doesn’t include child process (-c option) output. Errors are still
           written to stderr.

       --no-warnings
           Suppress all warning messages created by bpftrace.

   Tracing
       -e PROGRAM
           Execute PROGRAM instead of reading the program from a file

       -I DIR
           Add the directory DIR to the search path for C headers. This option
           can be used multiple times.

       --include FILENAME
           Add FILENAME as an include for the pre-processor. This is equal to
           adding '#include FILENAME' to the start bpftrace program. This
           option can be used multiple times.

       -l [SEARCH]
           List all probes that match the SEARCH pattern. If the pattern is
           omitted all probes will be listed. This pattern supports wildcards
           in the same way that probes do. E.g. '-l kprobe:*file*' to list all
           'kprobes' with 'file' in the name. For more details see the LISTING
           PROBES section.

       --unsafe
           Some calls, like 'system', are marked as unsafe as they can have
           dangerous side effects ('system("rm -rf")') and are disabled by
           default. This flag allows their use.

       -k
           Errors from bpf-helpers(7) are silently ignored by default which
           can lead to strange results. This flag enables the detection of
           errors (except for errors from 'probe_read_*'). When errors occurs
           bpftrace will log an error containing the source location and the
           error code:

           stdin:48-57: WARNING: Failed to probe_read_user_str: Bad address (-14)
           u:lib.so:"fn(char const*)" { printf("arg0:%s\n", str(arg0));}
                                                            ~~~~~~~~~

       -kk
           Same as '-k' but also includes the errors from 'probe_read_*'
           helpers.

   Process management
       -p PID
           Attach to the process with PID. If the process terminates, bpftrace
           will also terminate. When using USDT probes, uprobes, and
           uretprobes they will be attached to only this process. For listing
           uprobes/uretprobes if you set the target to '*' the process’s
           address space will be searched for the symbols.

       -c COMMAND
           Run COMMAND as a child process. When the child terminates bpftrace
           stops as well, as if 'exit()' has been called. If bpftrace
           terminates before the child process does the child process will be
           terminated with a SIGTERM. If used, 'USDT' probes these will only
           be attached to the child process. To avoid a race condition when
           using 'USDTs' the child is stopped after 'execve' using 'ptrace(2)'
           and continued when all 'USDT' probes are attached.
           The child PID is available to programs as the 'cpid' builtin.
           The child process runs with the same privileges as bpftrace itself
           (usually root).

       --usdt-file-activation
           activate usdt semaphores based on file path

   Miscellaneous
       --info
           Print detailed information about features supported by the kernel
           and the bpftrace build.

       --no-feature feature,feature,..., Disable detected features, valid
       values are
           uprobe_multi to disable uprobe_multi link
           kprobe_multi to disable kprobe_multi link

       -h, --help
           Print the help summary

       -V, --version
           Print bpftrace version information

       -v
           verbose messages

       -d
           debug mode

       -dd
           verbose debug mode

ENVIRONMENT VARIABLES
       Some behavior can only be controlled through environment variables.
       Most of these can also be set via the config block directly in a script
       (before any probes). This section lists all those variables.

   BPFTRACE_BTF
       Default: None

       The path to a BTF file. By default, bpftrace searches several locations
       to find a BTF file. See src/btf.cpp for the details.

   BPFTRACE_CACHE_USER_SYMBOLS
       Default: PER_PROGRAM if ASLR disabled or -c option given, PER_PID
       otherwise.

       -* PER_PROGRAM - each program has its own cache. If there are more
       processes with enabled ASLR for a single program, this might produce
       incorrect results. -* PER_PID - each process has its own cache. This is
       accurate for processes with ASLR enabled, and enables bpftrace to
       preload caches for processes running at probe attachment ti me. If
       there are many processes running, it will consume a lot of a memory. -*
       NONE - caching disabled. This saves the most memory, but at the cost of
       speed.

   BPFTRACE_CPP_DEMANGLE
       Default: 1

       C++ symbol demangling in userspace stack traces is enabled by default.

       This feature can be turned off by setting the value of this environment
       variable to 0.

   BPFTRACE_DEBUG_OUTPUT
       Default: 0

       Outputs bpftrace’s runtime debug messages to the trace_pipe. This
       feature can be turned on by setting the value of this environment
       variable to 1.

   BPFTRACE_KERNEL_BUILD
       Default: /lib/modules/$(uname -r)

       Only used with BPFTRACE_KERNEL_SOURCE if it is out-of-tree Linux kernel
       build.

   BPFTRACE_KERNEL_SOURCE
       Default: /lib/modules/$(uname -r)

       bpftrace requires kernel headers for certain features, which are
       searched for in this directory.

   BPFTRACE_LOG_SIZE
       Default: 1000000

       Log size in bytes.

   BPFTRACE_MAX_BPF_PROGS
       Default: 512

       This is the maximum number of BPF programs (functions) that bpftrace
       can generate. The main purpose of this limit is to prevent bpftrace
       from hanging since generating a lot of probes takes a lot of resources
       (and it should not happen often).

   BPFTRACE_MAX_CAT_BYTES
       Default: 10k

       Maximum bytes read by cat builtin.

   BPFTRACE_MAX_MAP_KEYS
       Default: 4096

       This is the maximum number of keys that can be stored in a map.
       Increasing the value will consume more memory and increase startup
       times. There are some cases where you will want to: for example,
       sampling stack traces, recording timestamps for each page, etc.

   BPFTRACE_MAX_PROBES
       Default: 512

       This is the maximum number of probes that bpftrace can attach to.
       Increasing the value will consume more memory, increase startup times
       and can incur high performance overhead or even freeze or crash the
       system.

   BPFTRACE_MAX_STRLEN
       Default: 64

       Number of bytes allocated on the BPF stack for the string returned by
       str().

       Make this larger if you wish to read bigger strings with str().

       Beware that the BPF stack is small (512 bytes), and that you pay the
       toll again inside printf() (whilst it composes a perf event output
       buffer). So in practice you can only grow this to about 200 bytes.

       Support for even larger strings is [being
       discussed](https://github.com/iovisor/bpftrace/issues/305).

   BPFTRACE_MAX_TYPE_RES_ITERATIONS
       Default: 0

       Maximum should be the number of levels of nested field accesses for
       tracepoint args. 0 is unlimited.

   BPFTRACE_PERF_RB_PAGES
       Default: 64

       Number of pages to allocate per CPU for perf ring buffer. The value
       must be a power of 2.

       If you’re getting a lot of dropped events bpftrace may not be
       processing events in the ring buffer fast enough. It may be useful to
       bump the value higher so more events can be queued up. The tradeoff is
       that bpftrace will use more memory.

   BPFTRACE_STACK_MODE
       Default: bpftrace

       Output format for ustack and kstack builtins. Available modes/formats:
       bpftrace, perf, and raw. This can be overwritten at the call site.

   BPFTRACE_STR_TRUNC_TRAILER
       Default: ..

       Trailer to add to strings that were truncated. Set to empty string to
       disable truncation trailers.

   BPFTRACE_VMLINUX
       Default: None

       This specifies the vmlinux path used for kernel symbol resolution when
       attaching kprobe to offset. If this value is not given, bpftrace
       searches vmlinux from pre defined locations. See
       src/attached_probe.cpp:find_vmlinux() for details.

BPFTRACE LANGUAGE
   Overview
       The bpftrace (bt) language is inspired by the D language used by dtrace
       and uses the same program structure. Each script consists of an
       preamble and one or more action blocks.

           preamble

           actionblock1
           actionblock2

       Preprocessor and type definitions take place in the preamble:

           #include <linux/socket.h>
           #define RED "\033[31m"

           struct S {
             int x;
           }

       Each action block consists of three parts:

           probe[,probe]
           /predicate/ {
             action
           }

       Probes
           A probe specifies the event and event type to attach too.

       Predicate
           The predicate is optional condition that must be met for the action
           to be executed.

       Action
             Actions are the programs that run when an event fires (and the
           predicate is met). An action is a semicolon (;) separated list of
           statements and always enclosed by brackets {}

       A basic script that traces the open(2) and openat(2) system calls can
       be written as follows:

           BEGIN
           {
                   printf("Tracing open syscalls... Hit Ctrl-C to end.\n");
           }

           tracepoint:syscalls:sys_enter_open,
           tracepoint:syscalls:sys_enter_openat
           {
                   printf("%-6d %-16s %s\n", pid, comm, str(args.filename));
           }

       This script has two action blocks and a total of 3 probes. The first
       action block uses the special BEGIN probe, which fires once during
       bpftrace startup. This probe is used to print a header, indicating that
       the tracing has started.

       The second action block uses two probes, one for open and one for
       openat, and defines an action that prints the file being open ed as
       well as the pid and comm of the process that execute the syscall. See
       the PROBES section for details on the available probe types.

   Identifiers
       Identifiers must match the following regular expression:
       [_a-zA-Z][_a-zA-Z0-9]*

   Comments
       Both single line and multi line comments are supported.

           // A single line comment
           i:s:1 { // can also be used to comment inline
           /*
            a multi line comment

           */
             print(/* inline comment block */ 1);
           }

   Config Block
       To improve script portability, you can set bpftrace configs via the
       config block, which can only be placed at the top of the script before
       any probes (even BEGIN).

           config = {
               stack_mode=perf;
               max_map_keys=2
           }

           BEGIN { ... }

           uprobe:./testprogs/uprobe_test:uprobeFunction1 { ... }

       The names of the config variables can be in the format of environment
       variables or their lowercase equivalent without the BPFTRACE_ prefix.
       For example, BPFTRACE_STACK_MODE, STACK_MODE, and stack_mode are
       equivalent.

       Note: Environment variables for the same config take precedence over
       those set inside a script config block.

   Data Types
       The following fundamental integer types are provided by the language.
       ┌────────┬─────────────────────────┐
       │        │                         │
       │ Type   Description             │
       ├────────┼─────────────────────────┤
       │        │                         │
       │ uint8  │ Unsigned 8 bit integer  │
       ├────────┼─────────────────────────┤
       │        │                         │
       │ int8   │ Signed 8 bit integer    │
       ├────────┼─────────────────────────┤
       │        │                         │
       │ uint16 │ Unsigned 16 bit integer │
       ├────────┼─────────────────────────┤
       │        │                         │
       │ int16  │ Signed 16 bit integer   │
       ├────────┼─────────────────────────┤
       │        │                         │
       │ uint32 │ Unsigned 32 bit integer │
       ├────────┼─────────────────────────┤
       │        │                         │
       │ int32  │ Signed 32 bit integer   │
       ├────────┼─────────────────────────┤
       │        │                         │
       │ uint64 │ Unsigned 64 bit integer │
       ├────────┼─────────────────────────┤
       │        │                         │
       │ int64  │ Signed 64 bit integer   │
       └────────┴─────────────────────────┘

   Floating-point
       Floating-point numbers are not supported by BPF and therefore not by
       bpftrace.

   Constants
       Integers constants can be defined in the following formats:

       •   decimal (base 10)

       •   octal (base 8)

       •   hexadecimal (base 16)

       •   scientific (base 10)

       Octal constants have to be prefixed with a 0, e.g. 0123. Hexadecimal
       constants start with either 0x or 0X, e.g. 0x10. Scientific are written
       in the <m>e<n> format which is a shorthand for m*10^n, e.g. $i = 2e3;.
       Note that scientific literals are integer only due to the lack of
       floating point support, 1e-3 is not valid.

       To improve the readability of big literals a underscore _ can be used
       as field separator, e.g. 1_000_123_000.

       Integer suffixes as found in the C language are parsed by bpftrace to
       ensure compatibility with C headers/definitions but they’re not used as
       size specifiers. 123UL, 123U and 123LL all result in the same integer
       type with a value of 123.

       Character constants can be defined by enclosing the character in single
       quotes, e.g. $c = 'c';.

       String constants can be defined by enclosing the character string in
       double quotes, e.g. $str = "Hello world";.

       Characters and strings support the following escape sequences:
       ┌──────┬──────────────────────┐
       │      │                      │
       │ \n   │ Newline              │
       ├──────┼──────────────────────┤
       │      │                      │
       │ \t   │ Tab                  │
       ├──────┼──────────────────────┤
       │      │                      │
       │ \0nn │ Octal value nn       │
       ├──────┼──────────────────────┤
       │      │                      │
       │ \xnn │ Hexadecimal value nn │
       └──────┴──────────────────────┘

   Type conversion
       Integer and pointer types can be converted using explicit type
       conversion with an expression like:

           $y = (uint32) $z;
           $py = (int16 *) $pz;

       Integer casts to a higher rank are sign extended. Conversion to a lower
       rank is done by zeroing leading bits.

       It is also possible to cast between integers and integer arrays using
       the same syntax:

           $a = (uint8[8]) 12345;
           $x = (uint64) $a;

       Both the cast and the destination type must have the same size. When
       casting to an array, it is possible to omit the size which will be
       determined automatically from the size of the cast value.

   Operators and Expressions
   Arithmetic Operators
       The following operators are available for integer arithmetic:
       ┌───┬────────────────────────┐
       │   │                        │
       │ + │ integer addition       │
       ├───┼────────────────────────┤
       │   │                        │
       │ - │ integer subtraction    │
       ├───┼────────────────────────┤
       │   │                        │
       │ * │ integer multiplication │
       ├───┼────────────────────────┤
       │   │                        │
       │ / │ integer division       │
       ├───┼────────────────────────┤
       │   │                        │
       │ % │ integer modulo         │
       └───┴────────────────────────┘

   Logical Operators
       ┌────┬─────────────┐
       │    │             │
       │ && │ Logical AND │
       ├────┼─────────────┤
       │    │             │
       │ || │ Logical OR  │
       ├────┼─────────────┤
       │    │             │
       │ !  │ Logical NOT │
       └────┴─────────────┘

   Bitwise Operators
       ┌────┬───────────────────────────┐
       │    │                           │
       │ &  │ AND                       │
       ├────┼───────────────────────────┤
       │    │                           │
       │ |  │ OR                        │
       ├────┼───────────────────────────┤
       │    │                           │
       │ ^  │ XOR                       │
       ├────┼───────────────────────────┤
       │    │                           │
       │ << │ Left shift the left-hand  │
       │    │ operand by the number of  │
       │    │ bits specified by the     │
       │    │ right-hand expression     │
       │    │ value                     │
       ├────┼───────────────────────────┤
       │    │                           │
       │ >> │ Right shift the left-hand │
       │    │ operand by the number of  │
       │    │ bits specified by the     │
       │    │ right-hand expression     │
       │    │ value                     │
       └────┴───────────────────────────┘

   Relational Operators
       The following relational operators are defined for integers and
       pointers.
       ┌────┬────────────────────────────┐
       │    │                            │
       │ <  │ left-hand expression is    │
       │    │ less than right-hand       │
       ├────┼────────────────────────────┤
       │    │                            │
       │ <= │ left-hand expression is    │
       │    │ less than or equal to      │
       │    │ right-hand                 │
       ├────┼────────────────────────────┤
       │    │                            │
       │ >  │ left-hand expression is    │
       │    │ bigger than right-hand     │
       ├────┼────────────────────────────┤
       │    │                            │
       │ >= │ left-hand expression is    │
       │    │ bigger or equal to than    │
       │    │ right-hand                 │
       ├────┼────────────────────────────┤
       │    │                            │
       │ == │ left-hand expression equal │
       │    │ to right-hand              │
       ├────┼────────────────────────────┤
       │    │                            │
       │ != │ left-hand expression not   │
       │    │ equal to right-hand        │
       └────┴────────────────────────────┘

       The following relation operators are available for comparing strings
       and integer arrays.
       ┌────┬────────────────────────────┐
       │    │                            │
       │ == │ left-hand string equal to  │
       │    │ right-hand                 │
       ├────┼────────────────────────────┤
       │    │                            │
       │ != │ left-hand string not equal │
       │    │ to right-hand              │
       └────┴────────────────────────────┘

   Assignment Operators
       The following assignment operators can be used on both map and scratch
       variables:
       ┌─────┬────────────────────────────┐
       │     │                            │
       │ =   │ Assignment, assign the     │
       │     │ right-hand expression to   │
       │     │ the left-hand variable     │
       ├─────┼────────────────────────────┤
       │     │                            │
       │ <<= │ Update the variable with   │
       │     │ its value left shifted by  │
       │     │ the number of bits         │
       │     │ specified by the           │
       │     │ right-hand expression      │
       │     │ value                      │
       ├─────┼────────────────────────────┤
       │     │                            │
       │ >>= │ Update the variable with   │
       │     │ its value right shifted by │
       │     │ the number of bits         │
       │     │ specified by the           │
       │     │ right-hand expression      │
       │     │ value                      │
       ├─────┼────────────────────────────┤
       │     │                            │
       │ +=  │ Increment the variable by  │
       │     │ the right-hand expression  │
       │     │ value                      │
       ├─────┼────────────────────────────┤
       │     │                            │
       │ -=  │ Decrement the variable by  │
       │     │ the right-hand expression  │
       │     │ value                      │
       ├─────┼────────────────────────────┤
       │     │                            │
       │ *=  │ Multiple the variable by   │
       │     │ the right-hand expression  │
       │     │ value                      │
       ├─────┼────────────────────────────┤
       │     │                            │
       │ /=  │ Divide the variable by the │
       │     │ right-hand expression      │
       │     │ value                      │
       ├─────┼────────────────────────────┤
       │     │                            │
       │ %=  │ Modulo the variable by the │
       │     │ right-hand expression      │
       │     │ value                      │
       ├─────┼────────────────────────────┤
       │     │                            │
       │ &=  │ Bitwise AND the variable   │
       │     │ by the right-hand          │
       │     │ expression value           │
       ├─────┼────────────────────────────┤
       │     │                            │
       │ |=  │ Bitwise OR the variable by │
       │     │ the right-hand expression  │
       │     │ value                      │
       ├─────┼────────────────────────────┤
       │     │                            │
       │ ^=  │ Bitwise XOR the variable   │
       │     │ by the right-hand          │
       │     │ expression value           │
       └─────┴────────────────────────────┘

       All these operators are syntactic sugar for combining assignment with
       the specified operator. @ -= 5 is equal to @ = @ - 5.

   Increment and Decrement Operators
       The increment (+`) and decrement (`--`) operators can be used on
       integer and pointer variables to increment their value by one. They can
       only be used on variables and can either be applied as prefix or
       suffix. The difference is that the expression `x+ returns the original
       value of x, before it got incremented while ++x returns the value of x
       post increment. E.g.

           $x = 10;
           $y = $x--; // y = 10; x = 9
           $a = 10;
           $b = --$a; // a = 9; b = 9

       Note that maps will be implicitly declared and initialized to 0 if not
       already declared or defined. Scratch variables must be initialized
       before using these operators.

   Variables and Maps
       bpftrace knows two types of variables, scratch and map.

       'scratch' variables are kept on the BPF stack and only exists during
       the execution of the action block and cannot be accessed outside of the
       program. Scratch variable names always start with a $, e.g. $myvar.

       'map' variables use BPF 'maps'. These exist for the lifetime of
       bpftrace itself and can be accessed from all action blocks and
       user-space. Map names always start with a @, e.g. @mymap.

       All valid identifiers can be used as name.

       The data type of a variable is automatically determined during first
       assignment and cannot be changed afterwards.

   Associative Arrays
       Associative arrays are a collection of elements indexed by a key,
       similar to the hash tables found in languages like C++ (std::map) and
       Python (dict). They’re a variant of 'map' variables.

           @name[key] = expression
           @name[key1,key2] = expression

       Just like with any variable the type is determined on first use and
       cannot be modified afterwards. This applies to both the key(s) and the
       value type.

       The following snippet creates a map with key signature [int64,
       string[16]] and a value type of int64:

           @[pid, comm]++

   Variable scoping
   Pointers
       Pointers in bpftrace are similar to those found in C.

   Tuples
       bpftrace has support for immutable N-tuples (n > 1). A tuple is a
       sequence type (like an array) where, unlike an array, every element can
       have a different type.

       Tuples are a comma separated list of expressions, enclosed in brackets,
       (1,2) Individual fields can be accessed with the . operator. Tuples are
       zero indexed like arrays are.

           i:s:1 {
             $a = (1,2);
             $b = (3,4, $a);
             print($a);
             print($b);
             print($b.0);
           }

       Prints:

           (1, 2)
           (3, 4, (1, 2))
           3

   Arrays
       bpftrace supports accessing one-dimensional arrays like those found in
       C.

       Constructing arrays from scratch, like int a[] = {1,2,3} in C, is not
       supported. They can only be read into a variable from a pointer.

       The [] operator is used to access elements.

           struct MyStruct {
             int y[4];
           }

           kprobe:dummy {
             $s = (struct MyStruct *) arg0;
             print($s->y[0]);
           }

   Structs
       C like structs are supported by bpftrace. Fields are accessed with the
       . operator. Fields of a pointer to a struct can be accessed with the ->
       operator.

       Custom struct can be defined in the preamble

       Constructing structs from scratch, like struct X var = {.f1 = 1} in C,
       is not supported. They can only be read into a variable from a pointer.

           struct MyStruct {
             int a;
           }

           kprobe:dummy {
             $ptr = (struct MyStruct *) arg0;
             $st = *$ptr;
             print($st.a);
             print($ptr->a);
           }

   Conditionals
       Conditional expressions are supported in the form of if/else statements
       and the ternary operator.

       The ternary operator consists of three operands: a condition followed
       by a ?, the expression to execute when the condition is true followed
       by a : and the expression to execute if the condition is false.

           condition ? ifTrue : ifFalse

       Both the ifTrue and ifFalse expressions must be of the same type,
       mixing types is not allowed.

       The ternary operator can be used as part of an assignment.

           $a == 1 ? print("true") : print("false");
           $b = $a > 0 ? $a : -1;

       If/else statements, like the one in C, are supported.

           if (condition) {
             ifblock
           } else if (condition) {
             if2block
           } else {
             elseblock
           }

   Loops
       Since kernel 5.3 BPF supports loops as long as the verifier can prove
       they’re bounded and fit within the instruction limit.

       In bpftrace loops are available through the while statement.

           while (condition) {
             block;
           }

       Within a while-loop the following control flow statements can be used:
       ┌──────────┬────────────────────────────┐
       │          │                            │
       │ continue │ skip processing of the     │
       │          │ rest of the block and jump │
       │          │ back to the evaluation of  │
       │          │ the conditional            │
       ├──────────┼────────────────────────────┤
       │          │                            │
       │ break    │ Terminate the loop         │
       └──────────┴────────────────────────────┘

           i:s:1 {
             $i = 0;
             while ($i <= 100) {
               printf("%d ", $i);
               if ($i > 5) {
                 break;
               }
               $i++
             }
             printf("\n");
           }

       Loop unrolling is also supported with the unroll statement.

           unroll(n) {
             block;
           }

       The compiler will evaluate the block n times and generate the BPF code
       for the block n times. As this happens at compile time n must be a
       constant greater than 0 (n > 0).

       The following two probes compile into the same code:

           i:s:1 {
             unroll(3) {
               print("Unrolled")
             }
           }

           i:s:1 {
             print("Unrolled")
             print("Unrolled")
             print("Unrolled")
           }

INVOCATION MODE
       There are three invocation modes for bpftrace built-in functions.
       ┌──────────────┬─────────────────────┬────────────────────┐
       │              │                     │                    │
       │ Mode         │ Description         │ Example functions  │
       ├──────────────┼─────────────────────┼────────────────────┤
       │              │                     │                    │
       │ Synchronous  │ The value/effect of │ reg(), str(),      │
       │              │ the built-in        │ ntop()             │
       │              │ function is         │                    │
       │              │ determined/handled  │                    │
       │              │ right away by the   │                    │
       │              │ bpf program in the  │                    │
       │              │ kernel space.       │                    │
       ├──────────────┼─────────────────────┼────────────────────┤
       │              │                     │                    │
       │ Asynchronous │ The value/effect of │ printf(), clear(), │
       │              │ the built-in        │ exit()             │
       │              │ function is         │                    │
       │              │ determined/handled  │                    │
       │              │ later by the        │                    │
       │              │ bpftrace process in │                    │
       │              │ the user space.     │                    │
       ├──────────────┼─────────────────────┼────────────────────┤
       │              │                     │                    │
       │ Compile-time │ The value of the    │ kaddr(),           │
       │              │ built-in function   │ cgroupid(),        │
       │              │ is determined       │ offsetof()         │
       │              │ before bpf programs │                    │
       │              │ are running.        │                    │
       └──────────────┴─────────────────────┴────────────────────┘

       While BPF in the kernel can do a lot there are still things that can
       only be done from user space, like the outputting (printing) of data.
       The way bpftrace handles this is by sending events from the BPF program
       which user-space will pick up some time in the future (usually in
       milliseconds). Operations that happen in the kernel are 'synchronous'
       ('sync') and those that are handled in user space are 'asynchronous'
       ('async')

       The asynchronous behaviour can lead to some unexpected behavior as
       updates can happen before user space had time to process the event. The
       following situations may occur:

       •   event loss: when using printf(), the amount of data printed may be
           less than the actual number of events generated by the kernel
           during BPF program’s execution.

       •   delayed exit: when using the exit() to terminate the program,
           bpftrace needs to handle the exit signal asynchronously causing the
           BPF program may continue to run for some additional time.

       One example is updating a map value in a tight loop:

           BEGIN {
               @=0;
               unroll(10) {
                 print(@);
                 @++;
               }
               exit()
           }

       Maps are printed by reference not by value and as the value gets
       updated right after the print user-space will likely only see the final
       value once it processes the event:

           @: 10
           @: 10
           @: 10
           @: 10
           @: 10
           @: 10
           @: 10
           @: 10
           @: 10
           @: 10

       Therefore, when you need precise event statistics, it is recommended to
       use synchronous functions (e.g. count() and hist()) to ensure more
       reliable and accurate results.

ADDRESS-SPACES
       Kernel and user pointers live in different address spaces which,
       depending on the CPU architecture, might overlap. Trying to read a
       pointer that is in the wrong address space results in a runtime error.
       This error is hidden by default but can be enabled with the -kk flag:

           stdin:1:9-12: WARNING: Failed to probe_read_user: Bad address (-14)
           BEGIN { @=*uptr(kaddr("do_poweroff")) }
                   ~~~

       bpftrace tries to automatically set the correct address space for a
       pointer based on the probe type, but might fail in cases where it is
       unclear. The address space can be changed with the kptr() and uptr()
       functions.

BUILTINS
       Builtins are special variables built into the language. Unlike the
       scratch and map variable they don’t need a $ or @ as prefix (except for
       the positional parameters).
       ┌───────────────┬─────────────┬────────────┬───────────────────────┬───────────────────┐
       │               │             │            │                       │                   │
       │ Variable      │ Type        │ Kernel     │ BPF Helper            │ Description       │
       ├───────────────┼─────────────┼────────────┼───────────────────────┼───────────────────┤
       │               │             │            │                       │                   │
       │ $1, $2, ...$n │ int64       │ n/a        │ n/a                   │ The nth           │
       │               │             │            │                       │ positional        │
       │               │             │            │                       │ parameter         │
       │               │             │            │                       │ passed to the     │
       │               │             │            │                       │ bpftrace          │
       │               │             │            │                       │ program. If       │
       │               │             │            │                       │ less than n       │
       │               │             │            │                       │ parameters        │
       │               │             │            │                       │ are passed        │
       │               │             │            │                       │ this              │
       │               │             │            │                       │ evaluates to      │
       │               │             │            │                       │ 0. For string     │
       │               │             │            │                       │ arguments use     │
       │               │             │            │                       │ the str()         │
       │               │             │            │                       │ call to           │
       │               │             │            │                       │ retrieve the      │
       │               │             │            │                       │ value.            │
       ├───────────────┼─────────────┼────────────┼───────────────────────┼───────────────────┤
       │               │             │            │                       │                   │
       │ $#            │ int64       │ n/a        │ n/a                   │ Total amount      │
       │               │             │            │                       │ of positional     │
       │               │             │            │                       │ parameters        │
       │               │             │            │                       │ passed.           │
       ├───────────────┼─────────────┼────────────┼───────────────────────┼───────────────────┤
       │               │             │            │                       │                   │
       │ arg0, arg1,   │ int64       │ n/a        │ n/a                   │ nth argument      │
       │ ...argn       │             │            │                       │ passed to the     │
       │               │             │            │                       │ function          │
       │               │             │            │                       │ being traced.     │
       │               │             │            │                       │ These are         │
       │               │             │            │                       │ extracted         │
       │               │             │            │                       │ from the CPU      │
       │               │             │            │                       │ registers.        │
       │               │             │            │                       │ The amount of     │
       │               │             │            │                       │ args passed       │
       │               │             │            │                       │ in registers      │
       │               │             │            │                       │ depends on        │
       │               │             │            │                       │ the CPU           │
       │               │             │            │                       │ architecture.     │
       │               │             │            │                       │ (kprobes,         │
       │               │             │            │                       │ uprobes,          │
       │               │             │            │                       │ usdt).            │
       ├───────────────┼─────────────┼────────────┼───────────────────────┼───────────────────┤
       │               │             │            │                       │                   │
       │ args          │ struct args │ n/a        │ n/a                   │ The struct of     │
       │               │             │            │                       │ all arguments     │
       │               │             │            │                       │ of the traced     │
       │               │             │            │                       │ function.         │
       │               │             │            │                       │ Available in      │
       │               │             │            │                       │ tracepoint,       │
       │               │             │            │                       │ kfunc, and        │
       │               │             │            │                       │ uprobe (with      │
       │               │             │            │                       │ DWARF)            │
       │               │             │            │                       │ probes. Use       │
       │               │             │            │                       │ args.x to         │
       │               │             │            │                       │ access            │
       │               │             │            │                       │ argument x or     │
       │               │             │            │                       │ args to get a     │
       │               │             │            │                       │ record with       │
       │               │             │            │                       │ all               │
       │               │             │            │                       │ arguments.        │
       ├───────────────┼─────────────┼────────────┼───────────────────────┼───────────────────┤
       │               │             │            │                       │                   │
       │ cgroup        │ uint64      │ 4.18       │ get_current_cgroup_id │ ID of the         │
       │               │             │            │                       │ cgroup the        │
       │               │             │            │                       │ current task      │
       │               │             │            │                       │ is in. Only       │
       │               │             │            │                       │ works with        │
       │               │             │            │                       │ cgroupv2.         │
       ├───────────────┼─────────────┼────────────┼───────────────────────┼───────────────────┤
       │               │             │            │                       │                   │
       │ comm          │ string[16]  │ 4.2        │ get_current_com       │ comm of the       │
       │               │             │            │                       │ current task.     │
       │               │             │            │                       │ Equal to the      │
       │               │             │            │                       │ value in          │
       │               │             │            │                       │ /proc/<pid>/comm  │
       ├───────────────┼─────────────┼────────────┼───────────────────────┼───────────────────┤
       │               │             │            │                       │                   │
       │ cpid          │ uint32      │ n/a        │ n/a                   │ PID of the child  │
       │               │             │            │                       │ process           │
       ├───────────────┼─────────────┼────────────┼───────────────────────┼───────────────────┤
       │               │             │            │                       │                   │
       │ numaid        │ uint32      │ 5.8        │ numa_node_id          │ ID of the NUMA    │
       │               │             │            │                       │ node executing    │
       │               │             │            │                       │ the BPF program   │
       ├───────────────┼─────────────┼────────────┼───────────────────────┼───────────────────┤
       │               │             │            │                       │                   │
       │ cpu           │ uint32      │ 4.1        │ raw_smp_processor_id  │ ID of the         │
       │               │             │            │                       │ processor         │
       │               │             │            │                       │ executing the     │
       │               │             │            │                       │ BPF program       │
       ├───────────────┼─────────────┼────────────┼───────────────────────┼───────────────────┤
       │               │             │            │                       │                   │
       │ curtask       │ uint64      │ 4.8        │ get_current_task      │ Pointer to        │
       │               │             │            │                       │ struct            │
       │               │             │            │                       │ task_struct of    │
       │               │             │            │                       │ the current task  │
       ├───────────────┼─────────────┼────────────┼───────────────────────┼───────────────────┤
       │               │             │            │                       │                   │
       │ elapsed       │ uint64      │ (see nsec) │ ktime_get_ns /        │ Nanoseconds       │
       │               │             │            │ ktime_get_boot_ns     │ elapsed since     │
       │               │             │            │                       │ bpftrace          │
       │               │             │            │                       │ initialization,   │
       │               │             │            │                       │ based on nsecs    │
       ├───────────────┼─────────────┼────────────┼───────────────────────┼───────────────────┤
       │               │             │            │                       │                   │
       │ func          │ string      │ n/a        │ n/a                   │ Name of the       │
       │               │             │            │                       │ current function  │
       │               │             │            │                       │ being traced      │
       │               │             │            │                       │ (kprobes,uprobes) │
       ├───────────────┼─────────────┼────────────┼───────────────────────┼───────────────────┤
       │               │             │            │                       │                   │
       │ gid           │ uint64      │ 4.2        │ get_current_uid_gid   │ GID of current    │
       │               │             │            │                       │ task              │
       ├───────────────┼─────────────┼────────────┼───────────────────────┼───────────────────┤
       │               │             │            │                       │                   │
       │ kstack        │ kstack      │            │ get_stackid           │ Kernel stack      │
       │               │             │            │                       │ trace             │
       ├───────────────┼─────────────┼────────────┼───────────────────────┼───────────────────┤
       │               │             │            │                       │                   │
       │ nsecs         │ uint64      │ 4.1 / 5.7  │ ktime_get_ns /        │ nanoseconds since │
       │               │             │            │ ktime_get_boot_ns     │ kernel boot. On   │
       │               │             │            │                       │ kernels that      │
       │               │             │            │                       │ support           │
       │               │             │            │                       │ ktime_get_boot_ns │
       │               │             │            │                       │ this includes the │
       │               │             │            │                       │ time spent        │
       │               │             │            │                       │ suspended, on     │
       │               │             │            │                       │ older kernels it  │
       │               │             │            │                       │ does not.         │
       ├───────────────┼─────────────┼────────────┼───────────────────────┼───────────────────┤
       │               │             │            │                       │                   │
       │ jiffies       │ uint64      │ 5.9        │ get_jiffies_64        │ Jiffies of the    │
       │               │             │            │                       │ kernel. In 32-bit │
       │               │             │            │                       │ system, using     │
       │               │             │            │                       │ this builtin      │
       │               │             │            │                       │ might be slower.  │
       ├───────────────┼─────────────┼────────────┼───────────────────────┼───────────────────┤
       │               │             │            │                       │                   │
       │ pid           │ uint64      │ 4.2        │ get_current_pid_tgid  │ Process ID (or    │
       │               │             │            │                       │ thread group ID)  │
       │               │             │            │                       │ of the current    │
       │               │             │            │                       │ task.             │
       ├───────────────┼─────────────┼────────────┼───────────────────────┼───────────────────┤
       │               │             │            │                       │                   │
       │ probe         │ string      │ n/na       │ n/a                   │ Name of the       │
       │               │             │            │                       │ current probe     │
       ├───────────────┼─────────────┼────────────┼───────────────────────┼───────────────────┤
       │               │             │            │                       │                   │
       │ rand          │ uint32      │ 4.1        │ get_prandom_u32       │ Random number     │
       ├───────────────┼─────────────┼────────────┼───────────────────────┼───────────────────┤
       │               │             │            │                       │                   │
       │ retval        │ int64       │ n/a        │ n/a                   │ Value returned by │
       │               │             │            │                       │ the function      │
       │               │             │            │                       │ being traced      │
       │               │             │            │                       │ (kretprobe,       │
       │               │             │            │                       │ uretprobe,        │
       │               │             │            │                       │ kretfunc)         │
       ├───────────────┼─────────────┼────────────┼───────────────────────┼───────────────────┤
       │               │             │            │                       │                   │
       │ sarg0, sarg1, │ int64       │ n/a        │ n/a                   │ nth stack value   │
       │ ...sargn      │             │            │                       │ of the function   │
       │               │             │            │                       │ being traced.     │
       │               │             │            │                       │ (kprobes,         │
       │               │             │            │                       │ uprobes).         │
       ├───────────────┼─────────────┼────────────┼───────────────────────┼───────────────────┤
       │               │             │            │                       │                   │
       │ tid           │ uint64      │ 4.2        │ get_current_pid_tgid  │ Thread ID of the  │
       │               │             │            │                       │ current task.     │
       ├───────────────┼─────────────┼────────────┼───────────────────────┼───────────────────┤
       │               │             │            │                       │                   │
       │ uid           │ uint64      │ 4.2        │ get_current_uid_gid   │ UID of current    │
       │               │             │            │                       │ task              │
       ├───────────────┼─────────────┼────────────┼───────────────────────┼───────────────────┤
       │               │             │            │                       │                   │
       │ ustack        │ ustack      │ 4.6        │ get_stackid           │ Userspace stack   │
       │               │             │            │                       │ trace             │
       └───────────────┴─────────────┴────────────┴───────────────────────┴───────────────────┘

MAP FUNCTIONS
       Map functions are built-in functions who’s return value can only be
       assigned to maps. The data type associated with these functions are
       only for internal use and are not compatible with the (integer)
       operators.

       Functions that are marked async are asynchronous which can lead to
       unexpected behavior, see the [Sync and Async] section for more
       information.

   avg
       variants

       •   avg(int64 n)

       Calculate the running average of n between consecutive calls.

           i:s:1 {
             @x++;
             @y = avg(@x);
             print(@x);
             print(@y);
           }

       Internally this keeps two values in the map: value count and running
       total. The average is computed in user-space when printing by dividing
       the total by the count.

   clear
       variants

       •   clear(map m)

       async

       Clear all keys/values from map m.

           i:ms:100 {
             @[rand % 10] = count();
           }

           i:s:10 {
             print(@);
             clear(@);
           }

   count
       variants

       •   count()

       Count how often this function is called.

       Using @=count() is conceptually similar to @++. The difference is that
       the count() function uses a map type optimized for this (PER_CPU),
       increasing performance. Due to this the map cannot be accessed as a
       regular integer.

           i:ms:100 {
             @ = count();
           }

           i:s:10 {
             print(@);
             clear(@);
           }

   delete
       variants

       •   delete(mapkey k)

       Delete a single key from a map. For a single value map this deletes the
       only element. For an associative-array the key to delete has to be
       specified.

           k:dummy {
             @scalar = 1;
             @associative[1,2] = 1;
             delete(@scalar);
             delete(@associative[1,2]);

             delete(@associative); // error
           }

   hist
       variants

       •   hist(int64 n[, int k])

       Create a log2 histogram of n using $2^k$ buckets per power of 2, 0 ⇐ k
       ⇐ 5, defaults to 0.

           kretprobe:vfs_read {
             @bytes = hist(retval);
           }

       Results in:

           @:
           [1M, 2M)               3 |                                                    |
           [2M, 4M)               2 |                                                    |
           [4M, 8M)               2 |                                                    |
           [8M, 16M)              6 |                                                    |
           [16M, 32M)            16 |                                                    |
           [32M, 64M)            27 |                                                    |
           [64M, 128M)           48 |@                                                   |
           [128M, 256M)          98 |@@@                                                 |
           [256M, 512M)         191 |@@@@@@                                              |
           [512M, 1G)           394 |@@@@@@@@@@@@@                                       |
           [1G, 2G)             820 |@@@@@@@@@@@@@@@@@@@@@@@@@@@                         |

   lhist
       variants

       •   lhist(int64 n, int64 min, int64 max, int64 step)

       Create a linear histogram of n. lhist creates M ((max - min) / step)
       buckets in the range [min,max) where each bucket is step in size.
       Values in the range (-inf, min) and (max, inf) get their get their own
       bucket too, bringing the total amount of buckets created to M+2.

           i:ms:1 {
             @ = lhist(rand %10, 0, 10, 1);
           }

           i:s:5 {
             exit();
           }

       Prints:

           @:
           [0, 1)               306 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@         |
           [1, 2)               284 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@            |
           [2, 3)               294 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@          |
           [3, 4)               318 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@       |
           [4, 5)               311 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@        |
           [5, 6)               362 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
           [6, 7)               336 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@    |
           [7, 8)               326 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@      |
           [8, 9)               328 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@     |
           [9, 10)              318 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@       |

   max
       variants

       •   max(int64 n)

       Update the map with n if n is bigger than the current value held.

   min
       variants

       •   min(int64 n)

       Update the map with n if n is smaller than the current value held.

   stats
       variants

       •   stats(int64 n)

       stats combines the count, avg and sum calls into one.

           kprobe:vfs_read {
             @bytes[comm] = stats(arg2);
           }

           @bytes[bash]: count 7, average 1, total 7
           @bytes[sleep]: count 5, average 832, total 4160
           @bytes[ls]: count 7, average 886, total 6208
           @

   sum
       variants

       •   sum(int64 n)

       Calculate the sum of all n passed.

   zero
       variants

       •   zero(map m)

       async

       Set all values for all keys to zero.

   len
       variants

       •   len(map m)

       Return the number of elements in the map.

FUNCTIONS
       Functions that are marked async are asynchronous which can lead to
       unexpected behaviour, see the [sync and async] section for more
       information.

       compile time functions are evaluated at compile time, a static value
       will be compiled into the program.

       unsafe functions can have dangerous side effects and should be used
       with care, the --unsafe flag is required for use.

   bswap
       variants

       •   uint8 bswap(uint8 n)

       •   uint16 bswap(uint16 n)

       •   uint32 bswap(uint32 n)

       •   uint64 bswap(uint64 n)

       bswap reverses the order of the bytes in integer n. In case of 8 bit
       integers, n is returned without being modified. The return type is an
       unsigned integer of the same width as n.

   buf
       variants

       •   buf_t buf(void * data, [int64 length])

       buf reads length amount of bytes from address data. The maximum value
       of length is limited to the BPFTRACE_MAX_STRLEN variable. For arrays
       the length is optional, it is automatically inferred from the
       signature.

       buf is address space aware and will call the correct helper based on
       the address space associated with data.

       The buf_t object returned by buf can safely be printed as a hex encoded
       string with the %r format specifier.

       Bytes with values >=32 and <=126 are printed using their ASCII
       character, other bytes are printed in hex form (e.g. \x00). The %rx
       format specifier can be used to print everything in hex form, including
       ASCII characters. The similar %rh format specifier prints everything in
       hex form without \x and with spaces between bytes (e.g. 0a fe).

           i:s:1 {
             printf("%r\n", buf(kaddr("avenrun"), 8));
           }

           \x00\x03\x00\x00\x00\x00\x00\x00
           \xc2\x02\x00\x00\x00\x00\x00\x00

   cat
       variants

       •   void cat(string namefmt, [...args])

       async

       Dump the contents of the named file to stdout. cat supports the same
       format string and arguments that printf does. If the file cannot be
       opened or read an error is printed to stderr.

           t:syscalls:sys_enter_execve {
             cat("/proc/%d/maps", pid);
           }

           55f683ebd000-55f683ec1000 r--p 00000000 08:01 1843399                    /usr/bin/ls
           55f683ec1000-55f683ed6000 r-xp 00004000 08:01 1843399                    /usr/bin/ls
           55f683ed6000-55f683edf000 r--p 00019000 08:01 1843399                    /usr/bin/ls
           55f683edf000-55f683ee2000 rw-p 00021000 08:01 1843399                    /usr/bin/ls
           55f683ee2000-55f683ee3000 rw-p 00000000 00:00 0

   cgroup_path
       variants

       •   cgroup_path cgroup_path(int cgroupid, string filter)

       Convert cgroup id to cgroup path. This is done asynchronously in
       userspace when the cgroup_path value is printed, therefore it can
       resolve to a different value if the cgroup id gets reassigned. This
       also means that the returned value can only be used for printing.

       A string literal may be passed as an optional second argument to filter
       cgroup hierarchies in which the cgroup id is looked up by a wildcard
       expression (cgroup2 is always represented by "unified", regardless of
       where it is mounted).

       The currently mounted hierarchy at /sys/fs/cgroup is used to do the
       lookup. If the cgroup with the given id isn’t present here (e.g. when
       running in a Docker container), the cgroup path won’t be found (unlike
       when looking up the cgroup path of a process via /proc/.../cgroup).

           BEGIN {
             $cgroup_path = cgroup_path(3436);
             print($cgroup_path);
             print($cgroup_path); /* This may print a different path */
             printf("%s %s", $cgroup_path, $cgroup_path); /* This may print two different paths */
           }

   cgroupid
       variants

       •   uint64 cgroupid(const string path)

       compile time

       cgroupid retrieves the cgroupv2 ID  of the cgroup available at path.

           BEGIN {
             print(cgroupid("/sys/fs/cgroup/system.slice"));
           }

   exit
       variants

       •   void exit()

       async

       Terminate bpftrace, as if a SIGTERM was received. The END probe will
       still trigger (if specified) and maps will be printed.

   join
       variants

       •   void join(char *arr[], [char * sep = ' '])

       async

       join joins all the string array arr with sep as separator into one
       string. This string will be printed to stdout directly, it cannot be
       used as string value.

       The concatenation of the array members is done in BPF and the printing
       happens in userspace.

           tracepoint:syscalls:sys_enter_execve {
             join(args.argv);
           }

   kaddr
       variants

       •   uint64 kaddr(const string name)

       compile time

       Get the address of the kernel symbol name.

       The following script:

   kptr
       variants

       •   T * kptr(T * ptr)

       Marks ptr as a kernel address space pointer. See the address-spaces
       section for more information on address-spaces. The pointer type is
       left unchanged.

   ksym
       variants

       •   ksym_t ksym(uint64 addr)

       async

       Retrieve the name of the function that contains address addr. The
       address to name mapping happens in user-space.

       The ksym_t type can be printed with the %s format specifier.

           kprobe:do_nanosleep
           {
             printf("%s\n", ksym(reg("ip")));
           }

       Prints:

           do_nanosleep

   macaddr
       variants

       •   macaddr_t macaddr(char [6] mac)

       Create a buffer that holds a macaddress as read from mac This buffer
       can be printed in the canonical string format using the %s format
       specifier.

           kprobe:arp_create {
             printf("SRC %s, DST %s\n", macaddr(sarg0), macaddr(sarg1));
           }

       Prints:

           SRC 18:C0:4D:08:2E:BB, DST 74:83:C2:7F:8C:FF

   ntop
       variants

       •   inet_t ntop([int64 af, ] int addr)

       •   inet_t ntop([int64 af, ] char addr[4])

       •   inet_t ntop([int64 af, ] char addr[16])

       ntop returns the string representation of an IPv4 or IPv6 address. ntop
       will infer the address type (IPv4 or IPv6) based on the addr type and
       size. If an integer or char[4] is given, ntop assumes IPv4, if a
       char[16] is given, ntop assumes IPv6. You can also pass the address
       type (e.g. AF_INET) explicitly as the first parameter.

   pton
       variants

       •   char addr[4] pton(const string *addr_v4)

       •   char addr[16] pton(const string *addr_v6)

       compile time

       pton converts a text representation of an IPv4 or IPv6 address to byte
       array. pton infers the address family based on . or : in the given
       argument. pton comes in handy when we need to select packets with
       certain IP addresses.

   override
       variants

       •   override(uint64 rc)

       unsafe

       Kernel 4.16

       Helper bpf_override

       Supported probes

       •   kprobe

       When using override the probed function will not be executed and
       instead rc will be returned.

           k:__x64_sys_getuid
           /comm == "id"/ {
             override(2<<21);
           }

           uid=4194304 gid=0(root) euid=0(root) groups=0(root)

       This feature only works on kernels compiled with
       CONFIG_BPF_KPROBE_OVERRIDE and only works on functions tagged
       ALLOW_ERROR_INJECTION.

       bpftrace does not test whether error injection is allowed for the
       probed function, instead if will fail to load the program into the
       kernel:

           ioctl(PERF_EVENT_IOC_SET_BPF): Invalid argument
           Error attaching probe: 'kprobe:vfs_read'

   reg
       variants

       •   reg(const string name)

       Supported probes

       •   kprobe

       •   uprobe

       Get the contents of the register identified by name. Valid names depend
       on the CPU architecture.

   signal
       variants

       •   signal(const string sig)

       •   signal(uint32 signum)

       unsafe

       Kernel 5.3

       Helper bpf_send_signal

       Probe types: k(ret)probe, u(ret)probe, USDT, profile

       Send a signal to the process being traced. The signal can either be
       identified by name, e.g. SIGSTOP or by ID, e.g. 19 as found in kill -l.

           kprobe:__x64_sys_execve
           /comm == "bash"/ {
             signal(5);
           }

           $ ls
           Trace/breakpoint trap (core dumped)

   sizeof
       variants

       •   sizeof(TYPE)

       •   sizeof(EXPRESSION)

       compile time

       Returns size of the argument in bytes. Similar to C/C++ sizeof
       operator. Note that the expression does not get evaluated.

   offsetof
       variants

       •   offsetof(STRUCT, FIELD)

       •   offsetof(EXPRESSION, FIELD)

       compile time

       Returns offset of the field offset bytes in struct. Similar to kernel
       offsetof operator. Note that subfields are not yet supported.

   str
       variants

       •   str(char * data [, uint32 length)

       Helper probe_read_str, probe_read_{kernel,user}_str

       str reads a NULL terminated (\0) string from data. The maximum string
       length is limited by the BPFTRACE_MAX_STRLEN env variable, unless
       length is specified and shorter than the maximum. In case the string is
       longer than the specified length only length - 1 bytes are copied and a
       NULL byte is appended at the end.

       When available (starting from kernel 5.5, see the --info flag) bpftrace
       will automatically use the kernel or user variant of
       probe_read_{kernel,user}_str based on the address space of data, see
       ADDRESS-SPACES for more information.

   strerror
       variants

       •   strerror strerror(int error)

       Convert errno code to string. This is done asynchronously in userspace
       when the strerror value is printed, hence the returned value can only
       be used for printing.

           #include <errno.h>
           BEGIN {
             print(strerror(EPERM));
           }

   strftime
       variants

       •   strtime_t strftime(const string fmt, int64 timestamp_ns)

       async

       Format the nanoseconds since boot timestamp timestamp_ns according to
       the format specified by fmt. The time conversion and formatting happens
       in user space, therefore  the timestr_t value returned can only be used
       for printing using the %s format specifier.

       bpftrace uses the strftime(3) function for formatting time and supports
       the same format specifiers.

           i:s:1 {
             printf("%s\n", strftime("%H:%M:%S", nsecs));
           }

       bpftrace also supports the following format string extensions:
       ┌───────────┬────────────────────────────┐
       │           │                            │
       │ Specifier │ Description                │
       ├───────────┼────────────────────────────┤
       │           │                            │
       │ %f        │ Microsecond as a decimal   │
       │           │ number, zero-padded on the │
       │           │ left                       │
       └───────────┴────────────────────────────┘

   strncmp
       variants

       •   int64 strncmp(char * s1, char * s2, int64 n)

       strncmp compares up to n characters string s1 and string s2. If they’re
       equal 0 is returned, else a non-zero value is returned.

       bpftrace doesn’t read past the length of the shortest string.

       The use of the == and != operators is recommended over calling strncmp
       directly.

   strcontains
       variants

       •   int64 strcontains(const char *haystack, const char *needle)

       strcontains compares whether the string haystack contains the string
       needle. If needle is contained 1 is returned, else zero is returned.

       bpftrace doesn’t read past the length of the shortest string.

   system
       variants

       •   void system(string namefmt [, ...args])

       unsafe async

       system lets bpftrace run the specified command (fork and exec) until it
       completes and print its stdout. The command is run with the same
       privileges as bpftrace and it blocks execution of the processing
       threads which can lead to missed events and delays processing of async
       events.

           i:s:1 {
             time("%H:%M:%S: ");
             printf("%d\n", @++);
           }
           i:s:10 {
             system("/bin/sleep 10");
           }
           i:s:30 {
             exit();
           }

       Note how the async time and printf first print every second until the
       i:s:10 probe hits, then they print every 10 seconds due to bpftrace
       blocking on sleep.

           Attaching 3 probes...
           08:50:37: 0
           08:50:38: 1
           08:50:39: 2
           08:50:40: 3
           08:50:41: 4
           08:50:42: 5
           08:50:43: 6
           08:50:44: 7
           08:50:45: 8
           08:50:46: 9
           08:50:56: 10
           08:50:56: 11
           08:50:56: 12
           08:50:56: 13
           08:50:56: 14
           08:50:56: 15
           08:50:56: 16
           08:50:56: 17
           08:50:56: 18
           08:50:56: 19

       system supports the same format string and arguments that printf does.

           t:syscalls:sys_enter_execve {
             system("/bin/grep %s /proc/%d/status", "vmswap", pid);
           }

   time
       variants

       •   void time(const string fmt)

       async

       Format the current wall time according to the format specifier fmt and
       print it to stdout. Unlike strftime() time() doesn’t send a timestamp
       from the probe, instead it is the time at which user-space processes
       the event.

       bpftrace uses the strftime(3) function for formatting time and supports
       the same format specifiers.

   uaddr
       variants

       •   T * uaddr(const string sym)

       Supported probes

       •   uprobes

       •   uretprobes

       •   USDT

       Does not work with ASLR, see issue #75
       <https://github.com/iovisor/bpftrace/issues/75>

       The uaddr function returns the address of the specified symbol. This
       lookup happens during program compilation and cannot be used
       dynamically.

       The default return type is uint64*. If the ELF object size matches a
       known integer size (1, 2, 4 or 8 bytes) the return type is modified to
       match the width (uint8*, uint16*, uint32* or uint64* resp.). As ELF
       does not contain type info the type is always assumed to be unsigned.

           uprobe:/bin/bash:readline {
             printf("PS1: %s\n", str(*uaddr("ps1_prompt")));
           }

   uptr
       variants

       •   T * uptr(T * ptr)

       Marks ptr as a user address space pointer. See the address-spaces
       section for more information on address-spaces. The pointer type is
       left unchanged.

   usym
       variants

       •   usym_t usym(uint64 * addr)

       async

       Supported probes

       •   uprobes

       •   uretprobes

       Equal to ksym but resolves user space symbols.

       If ASLR is enabled, user space symbolication only works when the
       process is running at either the time of the symbol resolution or the
       time of the probe attachment. The latter requires
       BPFTRACE_CACHE_USER_SYMBOLS to be set to PER_PID, and might not work
       with older versions of BCC. A similar limitation also applies to
       dynamically loaded symbols.

           uprobe:/bin/bash:readline
           {
             printf("%s\n", usym(reg("ip")));
           }

       Prints:

           readline

   path
       variants

       •   char * path(struct path * path)

       Kernel 5.10

       Helper bpf_d_path

       Return full path referenced by struct path pointer in argument.

       This function can only be used by functions that are allowed to, these
       functions are contained in the btf_allowlist_d_path set in the kernel.

   unwatch
       variants

       •   void unwatch(void * addr)

       async

       Removes a watchpoint

   skboutput
       variants

       •   uint32 skboutput(const string path, struct sk_buff *skb, uint64
           length, const uint64 offset)

       Kernel 5.5

       Helper bpf_skb_output

       Write sk_buff skb 's data section to a PCAP file in the path, starting
       from offset to offset + length.

       The PCAP file is encapsulated in RAW IP, so no ethernet header is
       included. The data section in the struct skb may contain ethernet
       header in some kernel contexts, you may set offset to 14 bytes to
       exclude ethernet header.

       Each packet’s timestamp is determined by adding nsecs and boot time,
       the accuracy varies on different kernels, see nsecs.

       This function returns 0 on success, or a negative error in case of
       failure.

       Environment variable BPFTRACE_PERF_RB_PAGES should be increased in
       order to capture large packets, or else these packets will be dropped.

       Usage

           # cat dump.bt
           kfunc:napi_gro_receive {
             $ret = skboutput("receive.pcap", args.skb, args.skb->len, 0);
           }

           kfunc:dev_queue_xmit {
             // setting offset to 14, to exclude ethernet header
             $ret = skboutput("output.pcap", args.skb, args.skb->len, 14);
             printf("skboutput returns %d\n", $ret);
           }

           # export BPFTRACE_PERF_RB_PAGES=1024
           # bpftrace dump.bt
           ...

           # tcpdump -n -r ./receive.pcap  | head -3
           reading from file ./receive.pcap, link-type RAW (Raw IP)
           dropped privs to tcpdump
           10:23:44.674087 IP 22.128.74.231.63175 > 192.168.0.23.22: Flags [.], ack 3513221061, win 14009, options [nop,nop,TS val 721277750 ecr 3115333619], length 0
           10:23:45.823194 IP 100.101.2.146.53 > 192.168.0.23.46619: 17273 0/1/0 (130)
           10:23:45.823229 IP 100.101.2.146.53 > 192.168.0.23.46158: 45799 1/0/0 A 100.100.45.106 (60)

OUTPUT FORMATTING
   print
       variants

       •   void print(T val)

       async

       variants

       •   void print(T val)

       •   void print(@map)

       •   void print(@map, uint64 top)

       •   void print(@map, uint64 top, uint64 div)

       print prints a the value, which can be a map or a scalar value, with
       the default formatting for the type.

           i:ms:10 { @=hist(rand); }
           i:s:1 {
             print(@);
             print(123);
             print("abc");
             exit();
           }

       Prints:

           @:
           [16M, 32M)             3 |@@@                                                 |
           [32M, 64M)             2 |@@                                                  |
           [64M, 128M)            1 |@                                                   |
           [128M, 256M)           4 |@@@@                                                |
           [256M, 512M)           3 |@@@                                                 |
           [512M, 1G)            14 |@@@@@@@@@@@@@@                                      |
           [1G, 2G)              22 |@@@@@@@@@@@@@@@@@@@@@@                              |
           [2G, 4G)              51 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

           123
           abc

       Note that maps are printed by reference while scalar values are copied.
       This means that updating and printing maps in a fast loop will likely
       result in bogus map values as the map will be updated before userspace
       gets the time to dump and print it.

       The printing of maps supports the optional top and div arguments. top
       limits the printing to the top N entries with the highest integer
       values

           BEGIN {
             $i = 11;
             while($i) {
               @[$i] = --$i;
             }
             print(@, 2);
             clear(@);
             exit()
           }

           @[9]: 9
           @[10]: 10

       The div argument scales the values prior to printing them. Scaling
       values before storing them can result in rounding errors. Consider the
       following program:

           k:f {
             @[func] += arg0/10;
           }

       With the following sequence as numbers for arg0: 134, 377, 111, 99. The
       total is 721 which rounds to 72 when scaled by 10 but the program would
       print 70 due to the rounding of individual values.

       Changing the print call to print(@, 5, 2) will take the top 5 values
       and scale them by 2:

           @[6]: 3
           @[7]: 3
           @[8]: 4
           @[9]: 4
           @[10]: 5

   printf
       variants

       •   void printf(const string fmt, args...)

       async

       printf() formats and prints data. It behaves similar to printf() found
       in C and many other languages.

       The format string has to be a constant, it cannot be modified at
       runtime. The formatting of the string happens in user space. Values are
       copied and passed by value.

       bpftrace supports all the typical format specifiers like %llx and %hhu.
       The non-standard ones can be found in the table below:
       ┌───────────┬────────┬─────────────────────┐
       │           │        │                     │
       │ Specifier │ Type   │ Description         │
       ├───────────┼────────┼─────────────────────┤
       │           │        │                     │
       │ r         │ buffer │ Hex-formatted       │
       │           │        │ string to print     │
       │           │        │ arbitrary binary    │
       │           │        │ content returned by │
       │           │        │ the buf (buf)       │
       │           │        │ function.           │
       └───────────┴────────┴─────────────────────┘

       Supported escape sequences

       Colors are supported too, using standard terminal escape sequences:

           print("\033[31mRed\t\033[33mYellow\033[0m\n")

PROBES
       bpftrace supports various probe types which allow the user to attach
       BPF programs to different types of events. Each probe starts with a
       provider (e.g. kprobe) followed by a colon (:) separated list of
       options. The amount of options and their meaning depend on the provider
       and are detailed below. The valid values for options can depend on the
       system or binary being traced, e.g. for uprobes it depends on the
       binary. Also see LISTING PROBES

       It is possible to associate multiple probes with a single action as
       long as the action is valid for all specified probes. Multiple probes
       can be specified as a comma (,) separated list:

           kprobe:tcp_reset,kprobe:tcp_v4_rcv {
             printf("Entered: %s\n", probe);
           }

       Wildcards are supported too:

           kprobe:tcp_* {
             printf("Entered: %s\n", probe);
           }

       Both can be combined:

           kprobe:tcp_reset,kprobe:*socket* {
             printf("Entered: %s\n", probe);
           }

       Most providers also support a short name which can be used instead of
       the full name, e.g. kprobe:f and k:f are identical.

   BEGIN and END
       These are special built-in events provided by the bpftrace runtime.
       BEGIN is triggered before all other probes are attached. END is
       triggered after all other probes are detached.

       Note that specifying an END probe doesn’t override the printing of
       'non-empty' maps at exit. To prevent the printing all used maps need be
       cleared, which can be done in the END probe:

           END {
               clear(@map1);
               clear(@map2);
           }

   hardware
       variants

       •   hardware:event_name:

       •   hardware:event_name:count

       shortname

       •   h

       The hardware probe attaches to pre-defined hardware events provided by
       the kernel.

       They are implemented using performance monitoring counters (PMCs):
       hardware resources on the processor. There are about ten of these, and
       they are documented in the perf_event_open(2) man page. The event names
       are:

       •   cpu-cycles or cycles

       •   instructions

       •   cache-references

       •   cache-misses

       •   branch-instructions or branches

       •   branch-misses

       •   bus-cycles

       •   frontend-stalls

       •   backend-stalls

       •   ref-cycles

       The count option specifies how many events must happen before the probe
       fires. If count is left unspecified a default value is used.

           hardware:cache-misses:1e6 { @[pid] = count(); }

   interval
       variants

       •   interval:us:count

       •   interval:ms:count

       •   interval:s:count

       •   interval:hz:rate

       shortnames

       •   i

       The interval probe fires at a fixed interval as specified by its time
       spec. Interval fire on one CPU at the time, unlike [profile] probes.

   iterator
       variants

       •   iter:task

       •   iter:task:pin

       •   iter:task_file

       •   iter:task_file:pin

       •   iter:task_vma

       •   iter:task_vma:pin

       shortnames

       •   it

       These are eBPF iterator probes, that allow iteration over kernel
       objects.

       Iterator probe can’t be mixed with any other probe, not even other
       iterator.

       Each iterator probe provides set of fields that could be accessed with
       ctx pointer. User can display set of available fields for iterator via
       -lv options as described below.

       Examples:

           # bpftrace -e 'iter:task { printf("%s:%d\n", ctx->task->comm, ctx->task->pid); }'
           Attaching 1 probe...
           systemd:1
           kthreadd:2
           rcu_gp:3
           rcu_par_gp:4
           kworker/0:0H:6
           mm_percpu_wq:8
           ...

           # bpftrace -e 'iter:task_file { printf("%s:%d %d:%s\n", ctx->task->comm, ctx->task->pid, ctx->fd, path(ctx->file->f_path)); }'
           Attaching 1 probe...
           systemd:1 1:/dev/null
           systemd:1 2:/dev/null
           systemd:1 3:/dev/kmsg
           ...
           su:1622 1:/dev/pts/1
           su:1622 2:/dev/pts/1
           su:1622 3:/var/lib/sss/mc/passwd
           ...
           bpftrace:1892 1:pipe:[35124]
           bpftrace:1892 2:/dev/pts/1
           bpftrace:1892 3:anon_inode:bpf-map
           bpftrace:1892 4:anon_inode:bpf-map
           bpftrace:1892 5:anon_inode:bpf_link
           bpftrace:1892 6:anon_inode:bpf-prog
           bpftrace:1892 7:anon_inode:bpf_iter

           # bpftrace -e 'iter:task_vma {printf("%s %d %lx-%lx\n", comm, pid, ctx->vma->vm_start, ctx->vma->vm_end);}'
           Attaching 1 probe...
           bpftrace 119480 55b92c380000-55b92c386000
           bpftrace 119480 55b92c386000-55b92c391000
           bpftrace 119480 55b92c391000-55b92c397000
           bpftrace 119480 55b92c398000-55b92c399000
           bpftrace 119480 55b92c399000-55b92c39a000
           bpftrace 119480 55b92cce3000-55b92d010000
           ...
           bpftrace 119480 7ffd55dde000-7ffd55de2000
           bpftrace 119480 7ffd55de2000-7ffd55de4000

       It’s possible to pin iterator with specifying optional probe ':pin'
       part, that defines the pin file. It can be specified as absolute path
       or relative to /sys/fs/bpf.

       relative pin

           # bpftrace -e 'iter:task:list { printf("%s:%d\n", ctx->task->comm, ctx->task->pid); }'
           Program pinned to /sys/fs/bpf/list

           # cat /sys/fs/bpf/list
           systemd:1
           kthreadd:2
           rcu_gp:3
           rcu_par_gp:4
           kworker/0:0H:6
           mm_percpu_wq:8
           rcu_tasks_kthre:9
           ...

       Examples with absolute pin file:

       absolute pin

           # bpftrace -e '
           iter:task_file:/sys/fs/bpf/files {
             printf("%s:%d %s\n", ctx->task->comm, ctx->task->pid, path(ctx->file->f_path));
           }'

           Program pinned to /sys/fs/bpf/files

           # cat /sys/fs/bpf/files
           systemd:1 anon_inode:inotify
           systemd:1 anon_inode:[timerfd]
           ...
           systemd-journal:849 /dev/kmsg
           systemd-journal:849 anon_inode:[eventpoll]
           ...
           sssd:1146 /var/log/sssd/sssd.log
           sssd:1146 anon_inode:[eventpoll]
           ...
           NetworkManager:1155 anon_inode:[eventfd]
           NetworkManager:1155 /var/lib/sss/mc/passwd (deleted)

   kfunc and kretfunc
       variants

       •   kfunc[:mod]:fn

       •   fentry[:mod]:fn

       •   kretfunc[:mod]:fn

       •   fexit[:mod]:fn

       shortnames

       •   f (kfunc)

       •   fr (kretfunc)

       requires (--info)

       •   Kernel features:BTF

       •   Probe types:kfunc

       kfuncs attach to kernel function similar to kprobe and kretprobe. They
       make use of eBPF trampolines which allows kernel code to call into BPF
       programs with near zero overhead. kfunc and kretfunc are aliased as
       fentry and fexit to match how these are referenced in the kernel.

       kfunc s make use of BTF type information to derive the type of function
       arguments at compile time. This removes the need for manual type
       casting and makes the code more resilient against small signature
       changes in the kernel. The function arguments are available in the args
       struct which can be inspected by doing verbose listing (see LISTING
       PROBES). These arguments are also available in the return probe
       (kretfunc).

           # bpftrace -lv 'kfunc:tcp_reset'
           kfunc:tcp_reset
               struct sock * sk
               struct sk_buff * skb

           kfunc:x86_pmu_stop {
             printf("pmu %s stop\n", str(args.event->pmu->name));
           }

           kretfunc:fget {
             printf("fd %d name %s\n", args.fd, str(retval->f_path.dentry->d_name.name));
           }

           fd 3 name ld.so.cache
           fd 3 name libselinux.so.1
           fd 3 name libselinux.so.1
           ...

           kfunc:kvm:x86_emulate_insn { @ = count(); }

           @ = 347603

   kprobe and kretprobe
       variants

       •   kprobe:fn

       •   kprobe:fn+offset

       •   kretprobe:fn

       shortnames

       •   k

       •   kr

       kprobe s allow for dynamic instrumentation of kernel functions. Each
       time the specified kernel function is executed the attached BPF
       programs are ran.

           kprobe:tcp_reset {
             @tcp_resets = count()
           }

       Function arguments are available through the argX and sargX builtins,
       for register args and stack args respectively. Whether arguments passed
       on stack or in a register depends on the architecture and the number or
       arguments in used, e.g. on x86_64 the first non-floating point 6
       arguments are passed in registers, all following arguments are passed
       on the stack. Note that floating point arguments are typically passed
       in special registers which don’t count as argX arguments which can
       cause confusion. Consider a function with the following signature:

           void func(int a, double d, int x)

       Due to d being a floating point x is accessed through arg1 where one
       might expect arg2.

       bpftrace does not detect the function signature so it is not aware of
       the argument count or their type. It is up to the user to perform Type
       conversion when needed, e.g.

           kprobe:tcp_connect
           {
             $sk = ((struct sock *) arg0);
             ...
           }

       kprobe s are not limited to function entry, they can be attached to any
       instruction in a function by specifying an offset from the start of the
       function.

       kretprobe s trigger on the return from a kernel function. Return probes
       do not have access to the function (input) arguments, only to the
       return value (through retval). A common pattern to work around this is
       by storing the arguments in a map on function entry and retrieving in
       the return probe:

           kprobe:d_lookup
           {
                   $name = (struct qstr *)arg1;
                   @fname[tid] = $name->name;
           }

           kretprobe:d_lookup
           /@fname[tid]/
           {
                   printf("%-8d %-6d %-16s M %s\n", elapsed / 1e6, pid, comm,
                       str(@fname[tid]));
           }

   profile
       variants

       •   profile:us:count

       •   profile:ms:count

       •   profile:s:count

       •   profile:hz:rate

       shortnames

       •   p

       Profile probes fire on each CPU on the specified interval.

   software
       variants

       •   software:event:

       •   software:event:count

       shortnames

       •   s

       The software probe attaches to pre-defined software events provided by
       the kernel. Event details can be found in the perf_event_open(2) man
       page.

       The event names are:

       •   cpu-clock or cpu

       •   task-clock

       •   page-faults or faults

       •   context-switches or cs

       •   cpu-migrations

       •   minor-faults

       •   major-faults

       •   alignment-faults

       •   emulation-faults

       •   dummy

       •   bpf-output

   tracepoint
       variants

       •   tracepoint:subsys:event

       shortnames

       •   t

       Tracepoints are hooks into events in the kernel. Tracepoints are
       defined in the kernel source and compiled into the kernel binary which
       makes them a form of static tracing. Which means that unlike kprobe s
       new tracepoints cannot be added without modifying the kernel.

       The advantage of tracepoints is that they generally provide a more
       stable interface than kprobe s do, they do not depend on the existence
       of a kernel function.

       Tracepoint arguments are available in the args struct which can be
       inspected with verbose listing, see the LISTING PROBES section for more
       details.

           tracepoint:syscalls:sys_enter_openat {
             printf("%s %s\n", comm, str(args.filename));
           }

           irqbalance /proc/interrupts
           irqbalance /proc/stat
           snmpd /proc/diskstats
           snmpd /proc/stat
           snmpd /proc/vmstat
           snmpd /proc/net/dev
           [...]

       Additional informationhttps://www.kernel.org/doc/html/latest/trace/tracepoints.html

   rawtracepoint
       variants

       •   rawtracepoint:event

       shortnames

       •   rt

       The hook point triggered by tracepoint and rawtracepoint is the same.
       tracepoint and rawtracepoint are nearly identical in terms of
       functionality. The only difference is in the program context.
       rawtracepoint offers raw arguments to the tracepoint while tracepoint
       applies further processing to the raw arguments. The additional
       processing is defined inside the kernel.

       Tracepoint arguments are available via the argN builtins. The available
       arguments can be found in the relative path of the kernel source code
       include/trace/events/. Each arg is a 64-bit integer.

           rawtracepoint:block_rq_insert {
             printf("%llx %llx\n", arg0, arg1);
           }

           ffff88810977d6f8 ffff8881097e8e80
           [...]

   uprobe, uretprobe
       variants

       •   uprobe:binary:func

       •   uprobe:binary:func+offset

       •   uprobe:binary:offset

       •   uretprobe:binary:func

       shortnames

       •   u

       •   ur

       uprobe s or user-space probes are the user-space equivalent of kprobe
       s. The same limitations that apply kprobe and kretprobe also apply to
       uprobe s and uretprobe s.

       When tracing libraries, it is sufficient to specify the library name
       instead of a full path. The path will be then automatically resolved
       using /etc/ld.so.cache:

           # bpftrace -e 'uprobe:libc:malloc { printf("Allocated %d bytes\n", arg0); }'
           Allocated 4 bytes
           ...

       If the traced binary has DWARF included, function arguments are
       available in the args struct which can be inspected with verbose
       listing, see the LISTING PROBES section for more details.

       When tracing C++ programs, it is possible to turn on automatic symbol
       demangling by using the :cpp prefix:

           # bpftrace -e 'u:src/bpftrace:cpp:"bpftrace::BPFtrace::add_probe" { print("adding probe\n"); }'
           Attaching 1 probe...
           adding probe

       It is important to note that for uretprobe s to work the kernel runs a
       special helper on user-space function entry which overrides the return
       address on the stack. This can cause issues with languages that have
       their own runtime like Golang:

       example.go

           func myprint(s string) {
             fmt.Printf("Input: %s\n", s)
           }

           func main() {
             ss := []string{"a", "b", "c"}
             for _, s := range ss {
               go myprint(s)
             }
             time.Sleep(1*time.Second)
           }

       bpftrace

           # bpftrace -e 'uretprobe:./test:main.myprint { @=count(); }' -c ./test
           runtime: unexpected return pc for main.myprint called from 0x7fffffffe000
           stack: frame={sp:0xc00008cf60, fp:0xc00008cfd0} stack=[0xc00008c000,0xc00008d000)
           fatal error: unknown caller pc

   usdt
       variants

       •   usdt:binary_path:probe_name

       •   usdt:binary_path:[probe_namespace]:probe_name

       •   usdt:library_path:probe_name

       •   usdt:library_path:[probe_namespace]:probe_name

       shortnames

       •   U

       You can target the entire host (or an entire process’s address space by
       using the -p arg) by using a single wildcard in place of the
       binary_path/library_path e.g. bpftrace -e 'usdt:*:loop {
       printf("hi\n"); }. Please note that if you use wildcards for the
       probe_name or probe_namespace and end up targeting multiple USDTs for
       the same probe you might get errors if you also utilize the USDT
       argument builtins (e.g. arg0) as they could be of different types.

   watchpoint and asyncwatchpoint
       variants

       •   watchpoint:absolute_address:length:mode

       •   watchpoint:function+argN:length:mode

       shortnames

       •   w

       •   aw

       These are memory watchpoints provided by the kernel. Whenever a memory
       address is written to (w), read from (r), or executed (x), the kernel
       can generate an event.

       In the first form, an absolute address is monitored. If a pid (-p) or a
       command (-c) is provided, bpftrace takes the address as a userspace
       address and monitors the appropriate process. If not, bpftrace takes
       the address as a kernel space address.

       In the second form, the address present in argN when function is
       entered is monitored. A pid or command must be provided for this form.
       If synchronous (watchpoint), a SIGSTOP is sent to the tracee upon
       function entry. The tracee will be SIGCONTed after the watchpoint is
       attached. This is to ensure events are not missed. If you want to avoid
       the SIGSTOP + SIGCONT use asyncwatchpoint.

       Note that on most architectures you may not monitor for execution while
       monitoring read or write.

       Examples

       Print hit when a read from or write to 0x10000000 happens:

           # bpftrace -e 'watchpoint:0x10000000:8:rw { printf("hit!\n"); exit(); }' -c ./testprogs/watchpoint

       Print the call stack every time the jiffies variable is updated:

           # bpftrace -e "watchpoint:0x$(awk '$3 == "jiffies" {print $1}' /proc/kallsyms):8:w {
             @[kstack] = count();
           }

           i:s:1 { exit(); }"
           ......
           @[
               do_timer+12
               tick_do_update_jiffies64.part.22+89
               tick_sched_do_timer+103
               tick_sched_timer+39
               __hrtimer_run_queues+256
               hrtimer_interrupt+256
               smp_apic_timer_interrupt+106
               apic_timer_interrupt+15
               cpuidle_enter_state+188
               cpuidle_enter+41
               do_idle+536
               cpu_startup_entry+25
               start_secondary+355
               secondary_startup_64+164
           ]: 319

       "hit" and exit when the memory pointed to by arg1 of increment is
       written to.

           # cat wpfunc.c
           #include <stdio.h>
           #include <stdlib.h>
           #include <unistd.h>

           __attribute__((noinline))
           void increment(__attribute__((unused)) int _, int *i)
           {
             (*i)++;
           }

           int main()
           {
             int *i = malloc(sizeof(int));
             while (1)
             {
               increment(0, i);
               (*i)++;
               usleep(1000);
             }
           }

           # bpftrace -e 'watchpoint:increment+arg1:4:w { printf("hit!\n"); exit() }' -c ./wpfunc

LISTING PROBES
       Probe listing is the method to discover which probes are supported by
       the current system. Listing supports the same syntax as normal
       attachment does:

           # bpftrace -l 'kprobe:*'
           # bpftrace -l 't:syscalls:*openat*
           # bpftrace -l 'kprobe:tcp*,trace
           # bpftrace -l 'k:*socket*,tracepoint:syscalls:*tcp*'

       The verbose flag (-v) can be specified to inspect arguments (args) for
       providers that support it:

           # bpftrace -l 'fr:tcp_reset,t:syscalls:sys_enter_openat' -v
           kretfunc:tcp_reset
               struct sock * sk
               struct sk_buff * skb
           tracepoint:syscalls:sys_enter_openat
               int __syscall_nr
               int dfd
               const char * filename
               int flags
               umode_t mode
           # bpftrace -l 'uprobe:/bin/bash:rl_set_prompt' -v    # works only if /bin/bash has DWARF
           uprobe:/bin/bash:rl_set_prompt
               const char *prompt

                                  2025-02-05                       BPFTRACE(8)

Generated by dwww version 1.16 on Tue Dec 16 16:50:13 CET 2025.